
Aivika:
Computation-based Modeling and

Simulation in Haskell

David E. Sorokin <david.sorokin@gmail.com>,
Yoshkar-Ola, Mari El, Russia

February 10, 2018

mailto:david.sorokin@gmail.com

Contents

I Sequential Simulation 7

1 Getting Started 9
1.1 Simulation . 9
1.2 External Parameters . 10
1.3 Ordinary Differential Equations 11

1.3.1 Integrals . 12
1.3.2 Memoization and Side Effects 13
1.3.3 Stochastic Equations . 14
1.3.4 Difference Equations . 15
1.3.5 Lifting Computations . 15

1.4 Simulation Experiment . 15
1.4.1 Returning Results from Model 16
1.4.2 Experiment Definition . 17
1.4.3 Charting . 18
1.4.4 Running Simulation Experiment 19

2 Discrete Event Simulation 22
2.1 Event-oriented Simulation . 22
2.2 Mutable Reference . 24
2.3 Example: Event-oriented Simulation 24
2.4 Variable with Memory . 26
2.5 Process-oriented Simulation . 27

2.5.1 Discontinuous Processes 27
2.5.2 Spawning Processes in Parallel 29
2.5.3 Memoizing . 30
2.5.4 Exception Handling . 30
2.5.5 Random Process Delays 30

2.6 Example: Process-oriented Simulation 31
2.6.1 Returning Results from Model 31
2.6.2 Experiment Definition . 32
2.6.3 Charting . 33
2.6.4 Running Simulation Experiment 33

2.7 Activity-oriented Simulation . 35
2.8 Example: Activity-oriented Simulation 35

1

3 Resources 38
3.1 Queue Strategies . 38
3.2 Resource . 39
3.3 Example: Using Resources . 41
3.4 Resource Statistics . 43
3.5 Example: Collecting Resource Statistics 43
3.6 Referencing to Properties . 46
3.7 Example: Charts for Resource Properties 47

3.7.1 Returning Results from Model 47
3.7.2 Experiment Definition . 48
3.7.3 Charting . 49
3.7.4 Running Simulation Experiment 49

3.8 Resource Preemption . 50

4 Statistics 52
4.1 Statistics based upon Observations 52
4.2 Statistics for Time Persistent Variables 53

5 Signals and Tasks 55
5.1 Signaling . 55
5.2 Tasks . 56
5.3 Composites . 57

6 Queue Network 58
6.1 Queues . 58
6.2 Stream . 60
6.3 Passive Streams and Active Signals 62
6.4 Processor . 62
6.5 Server . 65
6.6 Measuring Processing Time . 66
6.7 Example: Queue Network . 66

6.7.1 Returning Results from Model 67
6.7.2 Experiment Definition . 69
6.7.3 Charting . 71
6.7.4 Running Simulation Experiment 71

6.8 Example: Resource Preemption 71
6.8.1 Returning Results from Model 72
6.8.2 Experiment Definition . 74
6.8.3 Charting . 76
6.8.4 Running Simulation Experiment 76

7 Agent-based Modeling 77
7.1 Agents and Their States . 77
7.2 Example: Agent-based Modeling 78

7.2.1 Returning Results From Model 78
7.2.2 Experiment Definition . 80
7.2.3 Charting . 81
7.2.4 Running Simulation Experiment 81

2

8 Automata 82
8.1 Circuit . 82
8.2 Network . 84

9 System Dynamics 85
9.1 Example: Parametric Model . 85

9.1.1 Returning Results From Model 86
9.1.2 Experiment Definition . 88
9.1.3 Charting . 90
9.1.4 Running Simulation Experiments 91

9.2 Example: Using Arrays . 91
9.2.1 Returning Results from Model 92
9.2.2 Experiment Definition . 92
9.2.3 Charting . 94
9.2.4 Running Simulation Experiment 94

10 GPSS-like DSL 96
10.1 Blocks and Transacts . 96
10.2 Example: Using GPSS . 98

10.2.1 Returning Results from Model 99
10.2.2 Experiment Definition . 100
10.2.3 Charting . 101
10.2.4 Running Simulation Experiment 101

II Parallel and Distributed Simulation 103

11 Generalizing Simulation 105
11.1 Two Versions of Simulation Library 105
11.2 Replacing IO with Abstract Computation 105
11.3 Generalizing Sequential Model 107
11.4 Writing Generalized Code . 108

12 Distributed Simulation Computation 110
12.1 DIO Computation . 111
12.2 Running DIO Computation and Time Server 112
12.3 Example: Equivalent Sequential Simulation 113
12.4 Example: Making Simulation Distributed 116
12.5 Input/Output Operations . 120
12.6 Modeling Time Horizon . 121
12.7 Retrying Computations . 122
12.8 Recovering After Temporary Connection Errors 123
12.9 Stopping Disconnected Simulation 124
12.10Distributed Simulation As Service 125
12.11Monitoring Distributed Simulation 125
12.12Distributed Simulation Experiment 126
12.13Summary . 127

3

III Nested Simulation 128

13 Branches 130
13.1 Branching Simulation Computation 130
13.2 Example: Simulation Branches 131
13.3 Summary . 134

14 Lattice 135
14.1 Introducing Lattice . 135
14.2 Lattice Data Type . 137
14.3 Lattice Simulation Computation 138
14.4 Observable Computation . 139
14.5 Estimate Computation . 139
14.6 Example: Binomial Distribution 140
14.7 Criteria for Applicability . 142
14.8 Example: Binomial Option Pricing Model 142
14.9 Summary . 144

A Installing Aivika 145
A.1 Using Open Source Libraries Only 145
A.2 Using Aivika Extension Pack . 145
A.3 API Reference Documentation . 146

B Charting Backend 147

C Tracing Simulation 148

4

Introduction

I would like my readers considered this book as an invitation to a long-term
journey in the world, where the familiar simulation concepts could be rep-
resented from a possibly new and unexpected view. This adds yet another
approach for creating and simulating models that can be very complicated.

It is assumed that the reader is familiar with the basics of discrete event sim-
ulation (DES) and also he/she can understand the code written in the Haskell
programming language. It is difficult to overestimate the role of Haskell as the
very simulation method described in this book by all its nature is deeply related
to functional programming. I am always looking for other suitable program-
ming languages, but I still could not find better language for implementing my
ideas.

The book covers sequential simulation described in part I, parallel and
distributed simulation in part II as well as nested simulation in part III. All
types of simulation are based on the same core ideas. Moreover, many models
can be easily transferred from one type of simulation to another with little
modification.

By introducing basic simulation computations in chapter 1, the book de-
scribes foundational concepts applied in Aivika. This is a name for the simula-
tion framework described in the book. Its main libraries are open source. You
can find them on Hackage DB.

Chapter 2 introduces discrete events and discontinuous processes, the back-
bone of all the Aivika simulation framework. The discontinuous processes are
defined in terms of continuation-based computations that we can use as com-
posing units to build more complex computations. This is a key feature, which
distinguishes Aivika from many other simulation frameworks and libraries.

Chapter 3 describes how we can model the limited resources, which can
also be preempted if required. The resources are a very important concept in
discrete event simulation, but they are known under different names. There
are very similar concepts described in other chapters of the book.

Chapter 4 introduces two small data types that can be very useful for col-
lecting statistics. They are widely applied in Aivika itself, for example, when
collecting the statistics about behavior of some queue or resource.

Chapter 5 describes signals and tasks. The signals are widely used in the
implementation of simulation experiments, for example. But you can also use
the signals in your models. They follow the famous IObservable pattern from
the world of programming.

Chapter 6 is about queue networks. It introduces queues, servers and two
computations that allow connecting different elements in the compound queue
network. It can be done in quite a declarative manner.

5

Chapter 7 introduces basic constructs that can be useful for creating agent-
based models. It shows how we can define agents, their states and the related
time-out and timer handlers that can describe a non-trivial enough behavior of
the state machines.

Chapter 8 is devoted to an introduction of automata defined in terms of
functional programming. It just describes how we can model some circuits and
networks.

Chapter 9 shows how we can create models of System Dynamics in terms
of the Aivika simulation framework, although the framework itself is primary
focused on discrete event simulation. However, we can create complex differ-
ential and difference equations, using arrays if needed. Moreover, this chapter
demonstrates how we can provide sensitivity analysis by defining external ran-
dom parameters for the Monte Carlo method, which is applicable to any other
paradigm of simulation supported by Aivika.

Chapter 10 finishes the description of sequential simulation methods. It is
devoted to a GPSS-like domain specific language, which is very similar to the
popular GPSS modeling language. If you are familiar with that language then
this chapter can be useful for converting your GPSS models to Haskell.

Chapter 11 describes a generalized version of Aivika. In fact, the generalized
version contains almost the same code that the basic sequential version includes,
but the former is parameterized to be suitable for other types of simulation such
as distributed simulation and nested simulation. The chapter shows how easily
we can convert the existent sequential models to distributed models or nested
simulation models. Certainly, such a conversion does not take into account
the specifics of the target type of simulation, but we receive a quite equivalent
model.

Chapter 12 is entirely devoted to parallel and distributed simulation. It
describes an implementation of the optimistic Time Warp method. The chapter
shows how we can build safe and robust distributed simulation services based
on using the Linux operating system.

Chapter 13 introduces the nested type of simulation. It shows how we
can create cheap and fast nested simulations branching them from the current
simulation. As a caution, we must be careful with this type of simulation as
the tree of branches can have an exponential complexity. Therefore, we have to
limit the branches by some depth.

Chapter 14 describes another kind of nested simulation, when we use a
special tree known as lattice and we create branches of nested simulations in
the lattice nodes only. Traversing the lattice nodes has a quadratic complexity
already, which makes the simulation and the further estimation of some random
values a computationally feasible task. This kind of nested simulation can be
useful in financial modeling, for example, but you must understand when the
lattice is applicable and when it is not.

I hope you will find the material of this book interesting and useful for
your study and practice. Haskell is a beautiful programming language and the
most of definitions can be read as a strong mathematical formalism. At least,
I personally perceive Aivika namely as the strong mathematical formalism of
that how we can define and treat many simulation concepts.

6

Part I

Sequential Simulation

7

In the first part the sequential simulation is considered. It covers the most of
use cases. The corresponding implementation in Aivika is fastest and simplest.
Here the simulation run is single-threaded, but the operations occur one by one
in sequential order. Moreover, the model is single and it has no branches.

Other parts consider the parallel distributed simulation and nested simula-
tion.

8

Chapter 1

Getting Started

The installation instructions are described in appendix A of this document. You
can use Aivika on all main three platforms: Windows, macOS and Linux. All
examples provided in this document must work everywhere, using possibly
different charting back-ends. It is assumed below that your project depends on
packages aivika, aivika-experiment and aivika-experiment-chart.

But before we start creating simulation models, we have to introduce some
high-level concepts.

1.1 Simulation

In Aivika we can treat the simulation as a polymorphic function of the simula-
tion run:

newtype Simulation a = Simulation (Run -> IO a)

Using the variable type allows us to create different entities within the
simulation. As you can see, Simulation is a monad.

Given the specified simulation Specs, we can launch a simulation, where
Aivika will create a simulation Run and then launch already the computation
to receive the result:

runSimulation :: Simulation a -> Specs -> IO a

The simulation specs can contain the information about the start time and
final time of modeling. Since Aivika also allows us to integrate the differential
equations, we must provide the integration time step and method regardless of
whether they are actually used. Also the specs can define the random number
generator that we can use in the model.

data Specs = Specs { spcStartTime :: Double,
-- ^ the start time
spcStopTime :: Double,
-- ^ the stop time
spcDT :: Double,
-- ^ the integration time step
spcMethod :: Method,
-- ^ the integration method

9

spcGeneratorType :: GeneratorType
-- ^ the random number generator type

}

For the sake of simplicity, we will specify the 4th-order Runge-Kutta method
and a default random number generator, which became quite fast in the recent
versions to note.

For example, we can define the following simulation specs:

specs = Specs { spcStartTime = 0,
spcStopTime = 13,
spcDT = 0.01,
spcMethod = RungeKutta4,
spcGeneratorType = SimpleGenerator }

The mentioned above Run type is quite implementation dependent and it
is hidden in depths of API from direct using by the modeler. At least, it must
contain the specs provided so that they could be passed in to every part of the
Simulation computation.

To allow running the Monte-Carlo simulation, the Run value must also
contain the information about how many simulation runs are launched in
parallel as well as it must contain the current simulation run index. Then we
can run the specified number of parallel simulations, where each simulation
run will be distinguished by its index as well as it will contain its own instances
of the event queue and random number generator:

runSimulations :: Simulation a -> Specs -> Int -> [IO a]

The main idea is that many simulation models can be ultimately reduced to
the Simulation computation. Hence they can be trivially simulated using the
mentioned above run functions by the specified specs.

1.2 External Parameters

In practice, many models depend on external parameters, which is useful for
providing the Sensitivity Analysis.

To represent such parameters, Aivika uses almost the same definition that
is used for representing the Simulation computation.

newtype Parameter a = Parameter (Run -> IO a)

A key difference between these two computations is that the parameter can
be memoized before running the simulation so that the resulting Parameter
computation would return a constant value within every simulation run and
then its value would be updated for other runs (in a thread-safe way).

memoParameter :: Parameter a -> IO (Parameter a)

We usually have to memoize the parameter if its computation is not pure
and it depends on the IO actions such as reading an external file or generating
a random number.

It is natural to represent the simulation specs as external parameters when
modeling.

10

starttime :: Parameter Double
stoptime :: Parameter Double
dt :: Parameter Double

Since we provide the random number generator with the simulation specs,
it is also natural to generate the random numbers within the Parameter com-
putation.

randomUniform :: Double -> Double -> Parameter Double
randomNormal :: Double -> Double -> Parameter Double
randomExponential :: Double -> Parameter Double
randomErlang :: Double -> Int -> Parameter Double
randomPoisson :: Double -> Parameter Int
randomBinomial :: Double -> Int -> Parameter Int

There are other built-in random number distributions. Please refer to the
corresponding documentation.

To support the Design of Experiments (DoE), Aivika has two additional
computations that just return the corresponding fields from the simulation Run
defining the current simulation run index and the total run count, respectively.

simulationIndex :: Parameter Int
simulationCount :: Parameter Int

An arbitrary parameter can be converted to the Simulation computation
with help of the following function, which is actually defined in Aivika with
help of a type class.

class ParameterLift m where
liftParameter :: Parameter a -> m a

instance ParameterLift Simulation

It allows using parameters within the simulation:

Parameter a

liftParameter

��
Simulation a

1.3 Ordinary Differential Equations

In Aivika there is the Point type to represent a modeling time point within the
current simulation run. Based on this type, we can define a polymorphic time
varying function, which would be suitable for approximating the integrals.

The corresponding monadic computation is called Dynamics to emphasize
the fact that it can model some dynamic process defined usually with help
of ordinary differential equations (ODEs) and difference equations of System
Dynamics.

newtype Dynamics a = Dynamics (Point -> IO a)

Since the modeling time is passed in to every part of the Dynamics compu-
tation, it is natural to have the following computation that returns the current
time.

11

time :: Dynamics Double

There are different functions that allow running the Dynamics computation
within the simulation: in the start time, in the final time, in all integration time
points and in arbitrary time points defined by their numeric values.

runDynamicsInStartTime :: Dynamics a -> Simulation a
runDynamicsInStopTime :: Dynamics a -> Simulation a
runDynamicsInIntegTimes :: Dynamics a -> Simulation [IO a]

runDynamicsInTime :: Double -> Dynamics a -> Simulation a
runDynamicsInTimes :: [Double] -> Dynamics a -> Simulation [IO a]

1.3.1 Integrals

A key feature of the Dynamics computation is that this computation allows
approximating the integral by the specified derivative and initial value:

integ :: Dynamics Double -> Dynamics Double -> Simulation (Dynamics Double)

The second parameter of the function might be a pure value, but using a
computation here is more useful for practice as it allows direct referring to the
initial value of the integral when defining the differential equations.

The point is that the ordinary differential and difference equations can be
defined declaratively almost as in maths and as in many commercial simula-
tion software tools of System Dynamics such as Vensim[18], ithink/Stella[6],
Berkeley-Madonna[7] and Simtegra MapSys1.

To create an integral, Aivika has to allocate an internal array to store the
approximated values in the integration time points. It performs this side effect
within the Simulation computation, where it has an access to the simulation
specs.

Moreover, Aivika allows treating the parameterized Dynamics type as a nu-
meric type, which greatly simplifies the definition of differential and difference
equations as it will demonstrated below.

instance (Num a) => Num (Dynamics a)

For example, we can rewrite a model from the 5-Minute Tutorial of Berkeley-
Madonna[7] with the following equations.

ȧ = −ka × a, a(t0) = 100,
ḃ = ka × a − kb × b, b(t0) = 0,
ċ = kb × b, c(t0) = 0,

ka = 1,
kb = 1.

Let us return the integral values in the final simulation time. In the same
way, we could return the integral values in arbitrary time points, which we
would specify by using other run functions.

1In the past the author developed visual simulation software tool Simtegra MapSys, but the
software is unfortunately not available for the wide audience at time of preparing this document
anymore.

12

{-# LANGUAGE RecursiveDo #-}

import Simulation.Aivika
import Simulation.Aivika.SystemDynamics

model :: Simulation [Double]
model =
mdo a <- integ (- ka * a) 100

b <- integ (ka * a - kb * b) 0
c <- integ (kb * b) 0
let ka = 1

kb = 1
runDynamicsInStopTime $ sequence [a, b, c]

Here we base on the fact that the Simulation type is MonadFix and hence it
supports the recursive do-notation.

Now we can run the model using the 4th order Runge-Kutta method.

specs = Specs { spcStartTime = 0,
spcStopTime = 13,
spcDT = 0.01,
spcMethod = RungeKutta4,
spcGeneratorType = SimpleGenerator }

main =
runSimulation model specs >>= print

Had it been defined in the Main.hs file, we would receive the following
results by running the simulation in the Terminal window2:

$ runghc Main.hs
[2.260329409450236e-4,2.938428231048658e-3,99.99683553882805]

The difference equations can be defined in a similar manner. The reader can
find an example in the Aivika distribution.

Regarding the arrays and vectors of integrals, they are created naturally in
Haskell. No special support is required. Only we need to use also the recursive
do-notation to define an array if it has a loopback. The corresponding example
is provided in the Aivika distribution too.

It is worth noting that we can embed external functions in the differen-
tial equations using the do-notation. It is possible thanks to the fact that the
Simulation and Dynamics types are monads, because of which the numeric
integration is rather slow, though.

1.3.2 Memoization and Side Effects

Moreover, there are helper functions that allow embedding external functions
having a side effect. These helper functions order the calculations in the inte-
gration time points and use an interpolation in other time points.

For example, one of these functions is used in the mentioned above integ
function for integrating.

2Here and below the runghc command is used in the examples, which implies that Aivika is
installed with help of Cabal. But the same examples can be launched with help of Stack too, but
only we had to create the corresponding Stack project. Stack seems to be a more preferable choice
for the production code as it much less depends on the library changes.

13

memoDynamics :: Dynamics e -> Simulation (Dynamics e)
memo0Dynamics :: Dynamics e -> Simulation (Dynamics e)

The both functions memoize and order the resulting Dynamics computa-
tion in the integration time points. When requesting for a value in another
time point, the both functions apply the simplest interpolation returning the
value calculated in the closest less integration time point. But the functions be-
have differently, when integrating the equations with help of the Runge-Kutta
method.

The Point type contains the additional information to distinguish interme-
diate integration time points used by the method. While the memoDynamics
function memoizes the values in these intermediate time points, the second
function memo0Dynamics just ignore these points applying the interpolation.

Therefore, the first memoization function is used by the integ function. In
all other cases the second memoization function is more preferable as it is more
efficient and consumes less memory.

Regarding the Point type, it is implementation-dependent. Like the Run
type it is hidden from direct using by the modeler. The definition may change
in the future without affecting the rest API.

1.3.3 Stochastic Equations

The considered above simulation monads are imperative as they are based on
the IO monad. Namely this fact allows using the random number generator
within the simulation. Therefore, the ordinary differential equations can be
stochastic. Aivika provides useful helper random functions similar to those
ones that are used in other software tools of System Dynamics.

memoRandomUniformDynamics ::
Dynamics Double -> Dynamics Double -> Simulation (Dynamics Double)

memoRandomNormalDynamics ::
Dynamics Double -> Dynamics Double -> Simulation (Dynamics Double)

memoRandomExponentialDynamics ::
Dynamics Double -> Simulation (Dynamics Double)

memoRandomErlangDynamics ::
Dynamics Double -> Dynamics Int -> Simulation (Dynamics Double)

memoRandomPoissonDynamics ::
Dynamics Double -> Simulation (Dynamics Int)

memoRandomBinomialDynamics ::
Dynamics Double -> Dynamics Int -> Simulation (Dynamics Int)

They are based on the mentioned earlier random functions returning the
Parameter computation, but only these functions memoize the generated val-
ues in the integration time points and apply the interpolation in all other time
points. These functions are designed to be used in the differential and difference
equations.

14

1.3.4 Difference Equations

Regarding the difference equations, they can be built like differential ones. The
following function returns an accumulated sum represented as the Dynamics
computation by the specified difference and initial value.

diffsum :: (Num a, Unboxed a)
=> Dynamics a
-> Dynamics a
-> Simulation (Dynamics a)

Here the Unboxed type class specifies what types can represent unboxed
values for more efficient storing in memory. Its definition can be found in
Aivika.

1.3.5 Lifting Computations

Finally, we can convert an arbitrary Simulation computation to the Dynamics
one.

class SimulationLift m where
liftSimulation :: Simulation a -> m a

instance SimulationLift Dynamics
instance ParameterLift Dynamics

It literally means that we can use external parameters and computations
defined on level of the simulation run in the ordinary differential and difference
equations:

Parameter a

liftParameter

��
Simulation a

liftSimulation

��
Dynamics a

runDynamics

HH

1.4 Simulation Experiment

Besides the modeling constructs, there are other things which the simulation
framework should provide. To validate the model or to analyze it, Aivika
allows us to automate the process of displaying the most important simulation
results.

The simulation framework can save the results in CSV files that can be then
opened in the Office application or R statistics tool for further analysis. Also
the framework can plot charts and histograms by collected statistics.

One of the important charts is so called the deviation chart that shows the
trend and confidence interval by rule 3-sigma. There are also time series and XY
chart, which Aivika plot for each run, while the deviation chart is cumulative
and it is displayed for the entire Monte-Carlo simulation experiment, which
may consist of thousands of simulation runs.

15

When running the simulation experiment, Aivika creates a Web page con-
taining file index.html and the corresponding auxiliary files. Then you can
open the Web page in your favorite Internet browser to observe the simulation
results.

This approach actually allows running thousands of simulation runs within
one experiment, when only necessary data are kept in memory. At the same
time, the Internet browser becomes a tool for displaying the results.

1.4.1 Returning Results from Model

At first, we have to prepare the results of simulation. We associate each variable
with some Stringname using the resultSource function. Then we collect such
associations and return them as a value of type Resultswithin the Simulation
computation.

Our system of ordinary differential equations from the previous section can
be rewritten in the following way.

{-# LANGUAGE RecursiveDo #-}

import Simulation.Aivika
import Simulation.Aivika.SystemDynamics
import Simulation.Aivika.Experiment

model :: Simulation Results
model =
mdo a <- integ (- ka * a) 100

b <- integ (ka * a - kb * b) 0
c <- integ (kb * b) 0
let ka = 1

kb = 1
return $ results
[resultSource "t" "time" time,
resultSource "a" "variable A" a,
resultSource "b" "variable B" b,
resultSource "c" "variable C" c]

Now we can experiment with this model. For example, we can launch a
single simulation run to see the results of simulation in final time.

specs = Specs { spcStartTime = 0,
spcStopTime = 13,
spcDT = 0.01,
spcMethod = RungeKutta4,
spcGeneratorType = SimpleGenerator }

main =
printSimulationResultsInStopTime
printResultSourceInEnglish
model specs

It will print the following information:

-- simulation time
t = 13.0

-- time

16

t = 13.0

-- variable A
a = 2.260329409450236e-4

-- variable B
b = 2.938428231048658e-3

-- variable C
c = 99.99683553882805

Here the time is printed twice. The library function always prints the
simulation time. Also we bind name t with the current time. Note that the
comments are different.

In the same manner we could print the results in the integration time points.
Also we can show the information either in Russian or English.

The point is that we can return the variables of different nature in theResults
value. As we will see, we can return resources, queues, servers, arrays, lists etc.
We can customize it and return our own data type values in case of need.

An intriguing thing is that the Results value can actually be a source of
simulation results for different types of analysis, which can be more than just
printing in the terminal. So, we can plot charts and histograms, saves the results
in files. Let us see how we can do it.

1.4.2 Experiment Definition

Now we define an Experiment object specifying the simulation specs and a
number of runs. By specifying the number of runs greater than one, we actually
receive a Monte-Carlo simulation.

import Simulation.Aivika.Experiment

experiment :: Experiment
experiment =
defaultExperiment {
experimentSpecs = specs,
experimentRunCount = 1,
experimentTitle = "Chemical Reaction",
experimentDescription = "Chemical Reaction as described in " ++

"the 5-minute tutorial of Berkeley-Madonna" }

Then we define the series and generators that already know how to render
the results. Note that we refer to the variables by their String names that we
used when specifying the result sources by calling function resultSource in
the model.

t = resultByName "t"
a = resultByName "a"
b = resultByName "b"
c = resultByName "c"

generators :: ChartRendering r => [WebPageGenerator r]
generators =
[outputView defaultExperimentSpecsView,
outputView $ defaultTableView {
tableSeries = t <> a <> b <> c,

17

tablePredicate =
do n <- liftDynamics integIteration
return (n ‘mod‘ 10 == 0) },

outputView $ defaultTimeSeriesView {
timeSeriesTitle = "Time Series",
timeSeriesLeftYSeries = a <> b <> c }]

Here we specify that we want to save the results in the CSV file (table)
and plot the time series chart. We save only each 10th value in the CSV file
by requesting for the current integration iteration number and testing that the
number is evenly divided by 10.

Then we render a Web page by the specified model and experiment using
our generators. This page will contain the chart and a link to the corresponding
CSV file.

1.4.3 Charting

There is a choice. We plot the chart using the excellent Chart library and hence
we have to select the charting back-end. There are two back-ends: Cairo-based
and Diagrams-based. The choice can depend on your platform that can support
only one of the back-ends, or the both. Please read Appendix B of this document
for more detail.

Cairo-based Charting Back-end

Using the Cairo back-end, we import the necessary libraries and start the sim-
ulation experiment in the following way:

import Simulation.Aivika.Experiment
import Simulation.Aivika.Experiment.Chart
import Simulation.Aivika.Experiment.Chart.Backend.Cairo

import Graphics.Rendering.Chart.Backend.Cairo

import Model
import Experiment

main =
do let r0 = CairoRenderer PNG

r = (WebPageRenderer r0 experimentFilePath)
runExperimentParallel experiment generators r model

Diagrams-based Charting Back-end

Choosing the Diagrams back-end, we import other libraries and the start code
looks slightly different.

import Simulation.Aivika.Experiment
import Simulation.Aivika.Experiment.Chart
import Simulation.Aivika.Experiment.Chart.Backend.Diagrams

import Graphics.Rendering.Chart.Backend.Diagrams

import Model
import Experiment

18

main =
do fonts <- loadCommonFonts
let r0 = DiagramsRenderer SVG (return fonts)

r = WebPageRenderer r0 experimentFilePath
runExperimentParallel experiment generators r model

Given the model, experiment and generators, we run the simulation exper-
iment using one of the charting back-ends.

1.4.4 Running Simulation Experiment

When running the experiment with help of the Cairo back-end, we receive the
following output in the macOS terminal3:

$ ghc -O2 -threaded MainUsingCairo.hs
$./MainUsingCairo +RTS -N
Updating directory experiment
Generated file experiment/Table(1).csv
Generated file experiment/TimeSeries(1).png
Generated file experiment/index.html

It means that the application created a new directory experiment containing
the Web page, which we can open in the Internet browser.

As demonstrated in figure 1.1, the Web page shows the simulation exper-
iment specs, the time series chart and provides with a hyper-link to the CSV
file with the results. The chart is shown on figure 1.2 in more detail. We will
receive similar results on Windows and Linux too, whatever charting back-end
we will use.

3We could run the simulation by typing in the terminal "runghc MainUsingCairo.hs", but then
the code would be interpreted. We want to compile it with optimization to achieve the highest
speed available.

19

Figure 1.1: The rendered simulation experiment in the Internet browser.

20

Figure 1.2: The time series chart for chemical reaction.

21

Chapter 2

Discrete Event Simulation

Earlier we saw how Aivika can be useful for integrating the ordinary differen-
tial and difference equations, but Aivika is mainly focused on discrete event
simulation. The framework supports many paradigms of DES, but their im-
plementation is based on using the event queue. In other words, speaking
of Aivika, we can say that other paradigms of DES are reduced ultimately to
the event oriented paradigm. It is true for the process-oriented and activity-
oriented paradigms, at least in that sense how they are represented in Aivika.

2.1 Event-oriented Simulation

Under the event-oriented paradigm[12, 8] of DES, we put all pending events in
the priority queue, where the first event has the minimal activation time. Then
we sequentially activate the events removing them from the queue. During
such an activation we can add new events. This scheme is also called event-
driven.

Aivika uses almost the same time-varying function for the event-oriented
simulation, which we used for approximating the integrals with help of the
Dynamicsmonad.

newtype Event a = Event (Point -> IO a)

The difference is that Aivika strongly guarantees1 on level of the type system
of Haskell that the Event computation is always synchronized with the event
queue. Here we imply that every simulation run has an internal event queue,
which actually belongs to the Run type value we saw before.

A key feature of the Eventmonad is an ability to specify the event handler
that should be actuated at the desired modeling time, when the corresponding
event occurs.

enqueueEvent :: Double -> Event () -> Event ()

To pass in a message or some other data to the event handler, we just use a
closure when specifying the event handler in the second argument.

1Actually, there is a small room in Aivika for some hacking that may break this strong guarantee.

22

The event cancellation can be implemented trivially. We create a wrapper for
the source event handler and pass in namely this wrapper to the enqueueEvent
function. Then the wrapper already decides whether it should call the un-
derlying source event handler. We have to provide some means for notifying
the wrapper that the source event handler must be cancelled. Aivika has the
corresponded support.

The same technique of canceling the event can be adapted to implementing
the timer and time-out handlers used in the agent-based modeling as it is
described later.

To be involved in the simulation, the Event computation must be run ex-
plicitly or implicitly within the Dynamics computation. The most simple run
function is stated below. It actuates all pending event handlers from the event
queue relative to the current modeling time and then runs the specified com-
putation.

runEvent :: Event a -> Dynamics a

There is a subtle thing related to the Dynamics computation. In general, the
modeling time flows unpredictably within Dynamics, while there is a guarantee
that the time is synchronized with the event queue and flows monotonically
within the Event computation.

Other two run functions are destined for the most important use cases,
when we can run the input computation directly within Simulation in the
initial and final modeling time points, respectively. These two functions apply
the runEvent function.

runEventInStartTime :: Event a -> Simulation a
runEventInStopTime :: Event a -> Simulation a

Following the rule, an arbitrary Dynamics computation can be transformed
to the Event computation. As before, the corresponding function is defined in
a type class.

class DynamicsLift m where
liftDynamics :: Dynamics a -> m a

instance DynamicsLift Event
instance SimulationLift Event
instance ParameterLift Event

It means that integrals, external parameters and computations on level of
the simulation run can be directly used in the event-oriented simulation.

Parameter a

liftParameter

��
Simulation a

liftSimulation

��
Dynamics a

runDynamics

HH

liftDynamics

��
Event a

runEvent

II

23

2.2 Mutable Reference

Many DES models need a mutable reference. Since Haskell is a pure functional
programming language, all side effects must be expressed explicitly in the type
signatures. Mutable references require such effects.

In the Haskell standard libraries, IORef is the standard mutable reference.
Aivika introduces a very similar but strict Ref reference, where all computations
are synchronized with the event queue.

data Ref a

newRef :: a -> Simulation (Ref a)

readRef :: Ref a -> Event a
writeRef :: Ref a -> a -> Event ()
modifyRef :: Ref a -> (a -> a) -> Event ()

The simulation model should use the Ref type instead of IORef within the
Simulation computation whenever possible.

Especially, it is important for the distributed simulation, which is also sup-
ported by Aivika, because using any IO action would mean a synchronization
of the global virtual time among all logical processes involved in the distributed
simulation. But the Ref type is much and much faster as it supports roll-backs
and has no need in heavy synchronization.

Regarding the nested simulation supported by Aivika too, the Ref type
has an additional feature. Such a reference can be efficiently changed in the
derivative nested branches of simulation without affecting the reference value
in the descending branches of the same simulation model. But let us return to
describing the basics of Aivika.

2.3 Example: Event-oriented Simulation

The Aivika distribution contains examples of using the mutable references in
the DES models, one of which is provided below. The task itself is described in
the documentation of SimPy[8].

There are two machines, which sometimes break down. Up time is
exponentially distributed with mean 1.0, and repair time is expo-
nentially distributed with mean 0.5. There are two repairpersons, so
the two machines can be repaired simultaneously if they are down
at the same time. Output is long-run proportion of up time. Should
get value of about 0.66.

The corresponding model is as follows. It is worth nothing that the repre-
sented definition is not simplest. As you will see further in section 2.6, there
are other ways. But we need to introduce some new concepts before we could
rewrite the model.

import Control.Monad.Trans

import Simulation.Aivika

meanUpTime = 1.0

24

meanRepairTime = 0.5

specs = Specs { spcStartTime = 0.0,
spcStopTime = 1000.0,
spcDT = 1.0,
spcMethod = RungeKutta4,
spcGeneratorType = SimpleGenerator }

model :: Simulation Results
model =
do totalUpTime <- newRef 0.0

let machineBroken :: Double -> Event ()
machineBroken startUpTime =

do finishUpTime <- liftDynamics time
modifyRef totalUpTime (+ (finishUpTime - startUpTime))
repairTime <-
liftParameter $
randomExponential meanRepairTime

-- enqueue a new event
let t = finishUpTime + repairTime
enqueueEvent t machineRepaired

machineRepaired :: Event ()
machineRepaired =

do startUpTime <- liftDynamics time
upTime <-
liftParameter $
randomExponential meanUpTime

-- enqueue a new event
let t = startUpTime + upTime
enqueueEvent t $ machineBroken startUpTime

runEventInStartTime $
do -- start the first machine
machineRepaired
-- start the second machine
machineRepaired

let upTimeProp =
do x <- readRef totalUpTime
y <- liftDynamics time
return $ x / (2 * y)

return $
results
[resultSource
"upTimeProp"
"The long-run proportion of up time (~ 0.66)"
upTimeProp]

main =
printSimulationResultsInStopTime
printResultSourceInEnglish
model specs

We model two machines, each of them has two states. Every state is rep-
resented as the Event computation. These computations can be registered as

25

event handlers. Actuating the handler, we change the state of the machine.
After running the example, we receive a desired result with some accuracy.

$ runghc MachRep1EventDriven.hs

-- simulation time
t = 1000.0

-- The long-run proportion of up time (~ 0.66)
upTimeProp = 0.6635359777536585

Frankly speaking, the use of the event-oriented paradigm may seem to be
quite tedious. Aivika supports more high-level paradigms. Later it will be
shown how the same task can be solved in a more elegant and simple way.

2.4 Variable with Memory

Sometimes we need to mix the ordinary differential equations with discrete
event simulation. In most cases, it would be more simple and efficient to encode
Euler’s method directly within the Event computation. But if you still need to
use complex differential equations defined within the Dynamics computation,
then there is an approach that allows creating a combined simulation model. It
is not free and has a cost, though.

For that, there is an analog of the mutable reference that would save the
history of its values. Aivika defines the corresponding Var type. It has almost
the same functions with similar type signatures that the Ref reference has.

data Var a

newVar :: a -> Simulation (Var a)

readVar :: Var a -> Event a
writeVar :: Var a -> a -> Event ()
modifyVar :: Var a -> (a -> a) -> Event ()

However, we can also use the variable in the differential and difference
equations requesting for the first actual value for each time point with help of
the following function, actuating the pending events if required.

varMemo :: Var a -> Dynamics a

The magic is as follows. The Var variable stores the history of changes.
When updating the mutable variable, or requesting it for a value at new time
point, the Var data object stores internally the value, which was first for the
requested time point. Then it becomes constant within the simulation. There-
fore, the computation returned by the varMemo function can be used in the
differential and difference equations of System Dynamics.

On the contrary, the readVar function returns a computation of the recent
actual value for the current simulation time point. This value is already destined
to be used in the discrete event simulation as it is synchronized with the event
queue. Such is the Event computation that must be synchronized with the
event queue.

In case of need we can freeze temporarily the variable and receive its internal
state: triples of time, the first and last values for the corresponding time value.

26

freezeVar :: Var a -> Event (Array Int Double, Array Int a, Array Int a)

The time values returned by this function are distinct and sorted in ascend-
ing order.

It is worth noting that the Var variable is slow. It would be a logical mistake
to use Var for collecting statistics only. It would be rather inefficient. Moreover,
it would consume a lot of memory. In Aivika there are special data structures
that should be used for collecting statistics, though. See sections 4.1 and 4.2 for
detail.

2.5 Process-oriented Simulation

Under the process-oriented paradigm[12, 8], we model simulation activities with
help of a special kind of processes. We can explicitly suspend and resume
such processes. Also we can request for, and release of, the resources implicitly
suspending and resuming the processes in case of need.

Aivika actually supports the process-oriented simulation on different levels.
So, there are streams of data and processors that operate on these streams, but
they are considered further as well as GPSS-like blocks. Below is described a
lower level, which is a foundation for the higher levels, nevertheless.

2.5.1 Discontinuous Processes

The discontinuous process is represented by the continuation-based monad
Process. Moreover, there is an associated process identifier ProcessId type.

data Process a
data ProcessId

newProcessId :: Simulation ProcessId

We can run the process within the simulation with help of one of the next
functions.

runProcess :: Process () -> Event ()
runProcessUsingId :: ProcessId -> Process () -> Event ()

runProcessInStartTime :: Process () -> Simulation ()
runProcessInStartTimeUsingId :: ProcessId -> Process () -> Simulation ()

runProcessInStopTime :: Process () -> Simulation ()
runProcessInStopTimeUsingId :: ProcessId -> Process () -> Simulation ()

If the process identifier is not specified then a new generated identifier is
assigned at time of starting the process. Every process has always its own
unique identifier.

processId :: Process ProcessId

A characteristic feature of the Processmonad is that the process can be hold
for the specified time interval through the event queue.

holdProcess :: Double -> Process ()

27

It allows modeling some activity by delaying the computation. After the
time interval passes, the computation will resume its execution starting from
another time point, the current time plus the specified time interval.

Nevertheless, the held process can be immediately interrupted and we can
request for whether it indeed was interrupted. The information about this is
stored until the next call of the holdProcess function.

interruptProcess :: ProcessId -> Event ()
processInterrupted :: ProcessId -> Event Bool

The interrupted in such a way process continues its execution as if the
holdProcess function finished immediately. But there is another kind of in-
terruption, which is called a preemption. The preempted process suspends
temporarily and then resumes executing the holdProcess function from the
point where it was preempted. Please see section 3.8 for detail.

It is worth noting to say more about the types of computations returned by
the functions. The Event type of the result means that the computation executes
immediately and it cannot be interrupted. On the contrary, the Process type
of the result means that the corresponding computation may suspend, even
forever. This is very important for understanding.

To passivate the process for indefinite time so that it could be reactivated
later, we can use the following functions.

passivateProcess :: Process ()
processPassive :: ProcessId -> Event Bool
reactivateProcess :: ProcessId -> Event ()

Every process can be immediately cancelled, which is important for model-
ing some activities.

cancelProcessWithId :: ProcessId -> Event ()
cancelProcess :: Process a
processCancelled :: ProcessId -> Event Bool

Sometimes we need to run an arbitrary sub-process within the specified
time-out, but please note that this is a very slow computation.

timeoutProcess :: Double -> Process a -> Process (Maybe a)

If the sub-process executes too long and exceeds the time limit, then it is
immediately canceled and Nothing is returned within the Process computa-
tion. Otherwise; the computed result is returned right after it is received by the
sub-process.

Every simulation computation we considered before can be transformed to
the Process computation.

class EventLift m where
liftEvent :: Event a -> m a

instance EventLift Process
instance DynamicsLift Process
instance SimulationLift Process
instance ParameterLift Process

28

It allows using integrals and external parameters as well as updating the
mutable references and variables within the process-oriented simulation. It
allows combining the event-oriented and process-oriented simulation parts of
the model.

Parameter a

liftParameter

��
Simulation a

liftSimulation

��
Dynamics a

runDynamics

HH

liftDynamics

��
Event a

runEvent

II

liftEvent

��
Process a

runProcess

HH

2.5.2 Spawning Processes in Parallel

Another process can be forked and spawn on-the-fly. If that process is not
related to the current parent process in any way, then we can run the second
process within the Event computation and then transform the result to the
Process computation. There is no need to add a special function. It is enough
to have liftEvent and one of the Process run functions.

liftEvent $ runProcess (p :: Process ())

But if the life cycle of the child process must be bound up with the life cycle
of the parent process so that the processes would be canceled in some order if
required, then we should use one of the next functions.

spawnProcess :: Process () -> Process ()
spawnProcess = spawnProcessWith CancelTogether

spawnProcessWith :: ContCancellation -> Process () -> Process ()

Here the first argument of the second function specifies how two processes
are bound.

data ContCancellation =
| CancelTogether
| CancelChildAfterParent
| CancelParentAfterChild
| CancelInIsolation

The mentioned above timeoutProcess function uses spawnProcessWith to
run the specified sub-process within time-out.

Also an arbitrary number of the Process computations can be launched in
parallel and we can await the completion of all the started sub-processes to
return the final result.

processParallel :: [Process a] -> Process [a]

29

2.5.3 Memoizing

The Process computation can be memoized so that the resulting process would
always return the same value within the simulation run regardless of that how
many times the resulting process was requested repeatedly. The source process
is called once only.

memoProcess :: Process a -> Simulation (Process a)

Sometimes, it can be very useful to have this feature, for example, if we are
going to clone the stream of data.

2.5.4 Exception Handling

The continuations, which the Process monad is based on, are known to be
difficult for handling exceptions properly. Nevertheless, the author of Aivika
adapted successfully the F# Async approach and added the corresponding
functions to handle arbitrary exceptions within IO.

catchProcess :: Exception e => Process a -> (e -> Process a) -> Process a
finallyProcess :: Process a -> Process b -> Process a
throwProcess :: IOException -> Process a

There are similar functions for handling the exceptions within all other
simulation monads considered in the document before.

It is worth noting that the Process computation is faster unless the ex-
ception handling is enabled. Right after you apply catchProcess or the
finallyProcess function, additional checks are involved and hence the simu-
lation becomes slower.

2.5.5 Random Process Delays

In models we often need to hold the process for a random time interval from
the specified distribution. Aivika defines the corresponding helper functions.
All them generate a time interval and pass it to the holdProcess function like
this.

randomUniformProcess min max =
do t <- liftParameter $ randomUniform min max
holdProcess t
return t

There are two sibling functions for each distribution. The first function
performs an action and returns the interval used. The second function performs
the action only. Below are provided some of the functions. There are similar
functions for other built-in distributions too.

randomUniformProcess :: Double -> Double -> Process Double
randomUniformProcess_ :: Double -> Double -> Process ()

randomNormalProcess :: Double -> Double -> Process Double
randomNormalProcess_ :: Double -> Double -> Process ()

randomExponentialProcess :: Double -> Process Double
randomExponentialProcess_ :: Double -> Process ()

30

randomErlangProcess :: Double -> Int -> Process Double
randomErlangProcess_ :: Double -> Int -> Process ()

randomPoissonProcess :: Double -> Process Int
randomPoissonProcess_ :: Double -> Process ()

randomBinomialProcess :: Double -> Int -> Process Int
randomBinomialProcess_ :: Double -> Int -> Process ()

Thus, the functions described in this section allow efficiently modeling quite
complex activities. Nevertheless, the Process computation is still low-level.
Aivika supports more high-level computations described further.

2.6 Example: Process-oriented Simulation

Let us return to the task that was solved in section 2.3 using the event-oriented
paradigm. The problem statement is repeated here. It corresponds to the
documentation of SimPy.

There are two machines, which sometimes break down. Up time is
exponentially distributed with mean 1.0, and repair time is expo-
nentially distributed with mean 0.5. There are two repairpersons, so
the two machines can be repaired simultaneously if they are down
at the same time. Output is long-run proportion of up time. Should
get value of about 0.66.

2.6.1 Returning Results from Model

Using the processes, we can solve the task in a more elegant way. At first, we
have to write the model that would return the simulation results.

module Model(model) where

import Control.Monad.Trans

import Simulation.Aivika

meanUpTime = 1.0
meanRepairTime = 0.5

model :: Simulation Results
model =
do totalUpTime <- newRef 0.0

let machine :: Process ()
machine =
do upTime <-

randomExponentialProcess meanUpTime
liftEvent $
modifyRef totalUpTime (+ upTime)

repairTime <-
randomExponentialProcess meanRepairTime

machine

runProcessInStartTime machine

31

runProcessInStartTime machine

let upTimeProp =
do x <- readRef totalUpTime
y <- liftDynamics time
return $ x / (2 * y)

return $
results
[resultSource
"upTimeProp"
"The long-run proportion of up time (~ 0.66)"
upTimeProp]

The reader can compare this model with the previous one. Conceptually,
they do the same thing, use the same event queue and have the same behavior.

Also we can validate that the model behaves as expected by adding the
tracing messages as described in appendix C.

Returning to the current model, we could run the simulation by printing the
results in terminal. But it would be more interesting to demonstrate how we
can run the Monte-Carlo simulation to plot the deviation chart with confidence
intervals and to plot the histogram.

2.6.2 Experiment Definition

We define an experiment with 1000 simulation runs. The specs are the same as
before.

module Experiment (experiment, generators) where

import Data.Monoid

import Simulation.Aivika
import Simulation.Aivika.Experiment
import Simulation.Aivika.Experiment.Chart

specs = Specs { spcStartTime = 0.0,
spcStopTime = 1000.0,
spcDT = 1.0,
spcMethod = RungeKutta4,
spcGeneratorType = SimpleGenerator }

experiment :: Experiment
experiment =
defaultExperiment {
experimentSpecs = specs,
experimentRunCount = 1000,
experimentTitle = "MachRep1 Example",
experimentDescription = "The simulation experiment." }

x = resultByName "upTimeProp"

generators :: ChartRendering r => [WebPageGenerator r]
generators =
[outputView defaultExperimentSpecsView,
outputView defaultInfoView,
outputView $ defaultDeviationChartView {
deviationChartPlotTitle = "The Up-time Proportion Chart",
deviationChartLeftYSeries = x },

32

outputView $ defaultFinalHistogramView {
finalHistogramPlotTitle = "The Up-time Proportion Histogram",
finalHistogramSeries = x }]

Note how we refer to the variable by its name. The model deconstructs the
simulation entities so that they could be returned in an unified way as a value
of the Results type. Therefore, we have to restore the variables by their names.

Here we show the experiment specs, show the information about the vari-
ables, plot the deviation chart and then show the histogram by data collected
in final time points for all simulation runs.

2.6.3 Charting

Applying the Cairo-based charting back-end, we run the experiment with help
of the following code.

import Simulation.Aivika.Experiment
import Simulation.Aivika.Experiment.Chart
import Simulation.Aivika.Experiment.Chart.Backend.Cairo

import Graphics.Rendering.Chart.Backend.Cairo

import Model
import Experiment

main =
do let r0 = CairoRenderer PNG

r = (WebPageRenderer r0 experimentFilePath)
runExperimentParallel experiment generators r model

Alternatively, we could run the experiment using the Diagrams-based chart-
ing back-end. Then we would receive the image files in the SVG format instead
of PNG, but it should work on Windows.

import Simulation.Aivika.Experiment
import Simulation.Aivika.Experiment.Chart
import Simulation.Aivika.Experiment.Chart.Backend.Diagrams

import Graphics.Rendering.Chart.Backend.Diagrams

import Model
import Experiment

main =
do fonts <- loadCommonFonts
let r0 = DiagramsRenderer SVG (return fonts)

r = WebPageRenderer r0 experimentFilePath
runExperimentParallel experiment generators r model

You may notice that this code is the same as it was defined in section 1.4.3.
Therefore, it will not be repeated anymore.

2.6.4 Running Simulation Experiment

The resulting deviation chart and histogram are shown on figures 2.1 and 2.2,
respectively. On my not very new Macbook Pro, the Monte-Carlo simula-
tion with 1000 (thousand) runs lasted for 2.847 seconds only (less than three
seconds). It includes the plotting of charts.

33

Figure 2.1: The deviation chart for the long-run proportion of up-time.

Figure 2.2: The histogram for the long-run proportion of up-time.

34

There is also another popular paradigm that can be applied to the discrete
event simulation. It usually gives more rough simulation results as we have to
scale the modeling time. The next two sections show how Aivika supports that
paradigm and how we can apply it to solve the same task.

2.7 Activity-oriented Simulation

Under the activity-oriented paradigm[12, 8] of DES, we break time into tiny
increments. At each time point, we look around at all the activities and check
for the possible occurrence of events. Sometimes this scheme is called time-
driven.

An idea is that we can naturally represent the activity as an Event compu-
tation, which we will call periodically through the event queue.

enqueueEventWithTimes :: [Double] -> Event () -> Event ()
enqueueEventWithTimes ts e = loop ts
where loop [] = return ()

loop (t : ts) = enqueueEvent t $ e >> loop ts

We can also use another predefined function that does almost the same, but
only it calls the specified computation directly in the integration time points
specified by the simulation specs.

enqueueEventWithIntegTimes :: Event () -> Event ()

Being defined in such a way, the activity-oriented simulation can be com-
bined with the event-oriented and process-oriented ones. There is the corre-
sponding example in the Aivika distribution, where the pit furnace[12, 17] is
modeled.

2.8 Example: Activity-oriented Simulation

To illustrate the activity-oriented paradigm, let us take our old task that was
solved in section 2.3 using the event-oriented paradigm and in section 2.6 using
the process-oriented paradigm of DES. The problem statement is repeated here
again. It corresponds to the documentation of SimPy.

There are two machines, which sometimes break down. Up time is
exponentially distributed with mean 1.0, and repair time is expo-
nentially distributed with mean 0.5. There are two repairpersons, so
the two machines can be repaired simultaneously if they are down
at the same time. Output is long-run proportion of up time. Should
get value of about 0.66.

Now the model looks quite cumbersome. Moreover, we have to scale the
modeling time. The time points at which the events occur are not precise any
more.

35

import Control.Monad.Trans

import Simulation.Aivika

meanUpTime = 1.0
meanRepairTime = 0.5

specs = Specs { spcStartTime = 0.0,
spcStopTime = 1000.0,
spcDT = 0.05,
spcMethod = RungeKutta4,
spcGeneratorType = SimpleGenerator }

model :: Simulation Results
model =
do totalUpTime <- newRef 0.0

let machine :: Simulation (Event ())
machine =
do startUpTime <- newRef 0.0

-- a number of iterations when
-- the machine works
upNum <- newRef (-1)

-- a number of iterations when
-- the machine is broken
repairNum <- newRef (-1)

-- create a simulation model
return $
do upNum’ <- readRef upNum
repairNum’ <- readRef repairNum

let untilBroken =
modifyRef upNum $ \a -> a - 1

untilRepaired =
modifyRef repairNum $ \a -> a - 1

broken =
do writeRef upNum (-1)
-- the machine is broken
startUpTime’ <- readRef startUpTime
finishUpTime’ <- liftDynamics time
dt’ <- liftParameter dt
modifyRef totalUpTime $
\a -> a +
(finishUpTime’ - startUpTime’)

repairTime’ <-
liftParameter $
randomExponential meanRepairTime

writeRef repairNum $
round (repairTime’ / dt’)

repaired =
do writeRef repairNum (-1)
-- the machine is repaired
t’ <- liftDynamics time
dt’ <- liftParameter dt
writeRef startUpTime t’
upTime’ <-

36

liftParameter $
randomExponential meanUpTime

writeRef upNum $
round (upTime’ / dt’)

result | upNum’ > 0 = untilBroken
| upNum’ == 0 = broken
| repairNum’ > 0 = untilRepaired
| repairNum’ == 0 = repaired
| otherwise = repaired

result

-- create two machines with type Event ()
m1 <- machine
m2 <- machine

-- start the time-driven simulation of the machines
runEventInStartTime $
-- in the integration time points
enqueueEventWithIntegTimes $
do m1
m2

let upTimeProp =
do x <- readRef totalUpTime
y <- liftDynamics time
return $ x / (2 * y)

return $
results
[resultSource
"upTimeProp"
"The long-run proportion of up time (~ 0.66)"
upTimeProp]

main =
printSimulationResultsInStopTime
printResultSourceInEnglish
model specs

The results are very similar to those ones we received earlier, although now
the model is more rough and it is based on the different approach:

$ runghc MachRep1TimeDriven.hs

-- simulation time
t = 1000.0

-- The long-run proportion of up time (~ 0.66)
upTimeProp = 0.6556000000000012

Nevertheless, the activity-oriented paradigm can be exceptionally useful for
modeling some parts that are difficult to represent based on other simulation
paradigms.

37

Chapter 3

Resources

Resources are used when we need to model a shared but limited access. The
resource can be simple, when the discontinuous process that requests for this
resource is suspended in case of the resource deficiency. But there is also another
type of resources that can be preempted, when another process with more high
priority takes the resource ownership from the process with less priority. All
this is supported by Aivika.

3.1 Queue Strategies

Before we proceed to more high level modeling constructs, we need to de-
fine a queue strategy[17] that prescribes how the competitive requests must be
prioritized.

In Aivika the queue strategies are expressed in terms of type families, where
each queue strategy instance may specify its own queue storage type.

class QueueStrategy s where

data StrategyQueue s :: * -> *

newStrategyQueue :: s -> Simulation (StrategyQueue s i)
strategyQueueNull :: StrategyQueue s i -> Event Bool

The first function creates a queue by the specified strategy. The second one
tests whether the queue is empty.

The DequeueStrategy type class defines a strategy applied, when we try to
dequeue an item, but there are competitive requests which cannot be fulfilled
immediately. Therefore, we have to decide what request has a higher priority
when dequeueing.

class QueueStrategy s => DequeueStrategy s where
strategyDequeue :: StrategyQueue s i -> Event i

The EnqueueStrategy type class defines a strategy applied, when we try to
enqueue the item, but there are competitive requests which cannot be fulfilled
immediately too. We prioritize the request somehow by adding it to the queue
of requests.

38

class DequeueStrategy s => EnqueueStrategy s where
strategyEnqueue :: StrategyQueue s i -> i -> Event ()

There is also a version of the enqueueing strategy that uses priorities.

class DequeueStrategy s => PriorityQueueStrategy s p | s -> p where
strategyEnqueueWithPriority :: StrategyQueue s i -> p -> i -> Event ()

There are four predefined queue strategies in Aivika at present:

• FCFS (First Come - First Served), a.k.a. FIFO (First In - First Out);

• LCFS (Last Come - First Served), a.k.a. LIFO (Last In - First Out);

• SIRO (Service in Random Order);

• StaticPriorities (Using Static Priorities).

These strategies are implemented as data types having a single data con-
structor with the corresponded name.

data FCFS = FCFS deriving (Eq, Ord, Show)
data LCFS = LCFS deriving (Eq, Ord, Show)
data SIRO = SIRO deriving (Eq, Ord, Show)
data StaticPriorities = StaticPriorities deriving (Eq, Ord, Show)

Each type is an instance of the corresponding queue strategy.

instance EnqueueStrategy FCFS
instance EnqueueStrategy LCFS
instance EnqueueStrategy SIRO
instance PriorityQueueStrategy StaticPriorities Double

3.2 Resource

A resource[8] simulates something to be queued for, for example, the machine.

data Resource s

Here the type parameter s represents a queue strategy. We can use either
the predefined strategy or our own custom-made queue strategy. It will work
with the both.

The simplest constructor allows us to create a new resource by the specified
queue strategy and initial amount.

newResource :: QueueStrategy s => s -> Int -> Simulation (Resource s)

To acquire the specified resource, we can use the predefined functions like
these ones:

requestResource :: EnqueueStrategy s => Resource s -> Process ()

requestResourceWithPriority ::
PriorityQueueStrategy s p => Resource s -> p -> Process ()

The both suspend the discontinuous process in case of the resource defi-
ciency until some other simulation activity releases the resource.

39

releaseResourceWithinEvent :: DequeueStrategy s => Resource s -> Event ()

There is also a more convenient version of the last function that works within
the Process computation, but the provided function emphasizes the fact that
releasing the resource cannot block the simulation process and this action is
performed immediately.
releaseResource :: DequeueStrategy s => Resource s -> Process ()

We can request for the current available amount of the specified resource as
well as request for its capacity and the strategy applied.
resourceCount :: Resource s -> Event Int
resourceMaxCount :: Resource s -> Maybe Int
resourceStrategy :: Resource s -> s

The second function returns an optional value indicating that the maximum
amount could be unspecified when creating the resource.
newResourceWithMaxCount ::
QueueStrategy s => s -> Int -> Maybe Int -> Simulation (Resource s)

By default, the maximum possible amount, i.e. the resource capacity, is
set equaled to the initial amount specified when calling the first constructor
newResource.

There are type synonyms for resources that use the predefined queue strate-
gies.
type FCFSResource = Resource FCFS
type LCFSResource = Resource LCFS
type SIROResource = Resource SIRO
type PriorityResource = Resource StaticPriorities

There are constructors that use these type synonyms. Some of these con-
structors are used further in the examples.
newFCFSResource :: Int -> Simulation FCFSResource
newLCFSResource :: Int -> Simulation LCFSResource
newSIROResource :: Int -> Simulation SIROResource
newPriorityResource :: Int -> Simulation PiriorityResource

Finally, there is a helper usingResource function that acquires the resource,
runs the specified Process computation and finally releases the resource re-
gardless of whether the specified process was cancelled or an exception was
raised.
usingResource :: EnqueueStrategy s => Resource s -> Process a -> Process a
usingResource r m =
do requestResource r
finallyProcess m $ releaseResource r

We can do the same with the resource using priorities.
usingResourceWithPriority ::
PriorityQueueStrategy s p => Resource s -> p -> Process a -> Process a

usingResourceWithPriority r priority m =
do requestResourceWithPriority r priority
finallyProcess m $ releaseResource r

The both functions use the finallyProcess function that allows executing a
finalization part within the computation, whenever an exception might arise or
the computation was canceled at all. The functions guarantee that the resource
will be released in any case.

40

3.3 Example: Using Resources

To illustrates how the resources can be used for modeling, let us again take a
task from the documentation of SimPy[15].

Two machines, but sometimes break down. Up time is exponen-
tially distributed with mean 1.0, and repair time is exponentially
distributed with mean 0.5. In this example, there is only one repair-
person, so the two machines cannot be repaired simultaneously if
they are down at the same time.

In addition to finding the long-run proportion of up time, let us also
find the long-run proportion of the time that a given machine does
not have immediate access to the repairperson when the machine
breaks down. Output values should be about 0.6 and 0.67.

In Aivika we can solve this task in the following way.

import Control.Monad
import Control.Monad.Trans

import Simulation.Aivika

meanUpTime = 1.0
meanRepairTime = 0.5

specs = Specs { spcStartTime = 0.0,
spcStopTime = 1000.0,
spcDT = 1.0,
spcMethod = RungeKutta4,
spcGeneratorType = SimpleGenerator }

model :: Simulation Results
model =
do -- number of times the machines have broken down
nRep <- newRef 0

-- number of breakdowns in which the machine
-- started repair service right away
nImmedRep <- newRef 0

-- total up time for all machines
totalUpTime <- newRef 0.0

repairPerson <- newFCFSResource 1

let machine :: Process ()
machine =
do upTime <-

randomExponentialProcess meanUpTime
liftEvent $
modifyRef totalUpTime (+ upTime)

-- check the resource availability
liftEvent $
do modifyRef nRep (+ 1)
n <- resourceCount repairPerson
when (n == 1) $
modifyRef nImmedRep (+ 1)

41

requestResource repairPerson
repairTime <-
randomExponentialProcess meanRepairTime

releaseResource repairPerson

machine

runProcessInStartTime machine
runProcessInStartTime machine

let upTimeProp =
do x <- readRef totalUpTime
y <- liftDynamics time
return $ x / (2 * y)

immedProp :: Event Double
immedProp =
do n <- readRef nRep
nImmed <- readRef nImmedRep
return $
fromIntegral nImmed /
fromIntegral n

return $
results
[resultSource
"upTimeProp"
"The long-run proportion of up time (~ 0.6)"
upTimeProp,
--
resultSource
"immedProp"
"The proption of time of immediate access (~0.67)"
immedProp]

main =
printSimulationResultsInStopTime
printResultSourceInEnglish
model specs

This is a complete Haskell program, which can be launched with help of the
runghc utility or compiled to a native code. It returns the expected results.

$ runghc MachRep2.hs

-- simulation time
t = 1000.0

-- The long-run proportion of up time (~ 0.6)
upTimeProp = 0.6089071789353254

-- The proption of time of immediate access (~0.67)
immedProp = 0.6650082918739635

Here we use an additional entity, the resource. Actually, there are different
resources in Aivika. The resource we have applied is the most simple one,
which is optimized for execution.

42

3.4 Resource Statistics

There is another kind of resources that collect statistics during simulation. Such
a resource collects data about its queue size, wait time, contents and utilization.

At first, it resides in another module, because of which we should use a
qualified import like this

import qualified Simulation.Aivika.Resource as R

Since some of these data depend on the starting time, we construct the re-
source already within the Event computation, using the runEventInStartTime
function if needed.

newResource :: QueueStrategy s => s -> Int -> Event (Resource s)

newResourceWithMaxCount ::
QueueStrategy s => s -> Int -> Maybe Int -> Event (Resource s)

In the course of simulation, you can always receive the current state of
statistics by functions like this

resourceWaitTime :: Resource s -> Event (SamplingStats Double)

It returns the resource wait time statistics. Here the SamplingStats type
corresponds to the statistics based upon Observations. This along with another
kind of statistics are described in chapter 4 in more detail.

But in most cases there is no need to request for the statistics explicitly by
using such functions. Instead, we will request for these statistics at level of
processing the results of simulation as it will be shown in the example from
section 3.7.

Finally, we can reset the resource statistics by calling the next function.

resetResource :: Resource s -> Event ()

Usually, we should call it at some modeling time by using the enqueueEvent
function to activate the corresponding event for clearing the effects of dirty start,
when the model could not be in stable state yet.

In the rest, this resource has almost the same functions that we considered
in the previous section 3.2.

3.5 Example: Collecting Resource Statistics

Let us proceed with our model from section 3.3, but rewrite it by using the
resource that collects the statistics when simulating.

import Control.Monad
import Control.Monad.Trans

import Simulation.Aivika
import qualified Simulation.Aivika.Resource as R

meanUpTime = 1.0
meanRepairTime = 0.5

specs = Specs { spcStartTime = 0.0,

43

spcStopTime = 1000.0,
spcDT = 1.0,
spcMethod = RungeKutta4,
spcGeneratorType = SimpleGenerator }

model :: Simulation Results
model =
do -- number of times the machines have broken down
nRep <- newRef 0

-- number of breakdowns in which the machine
-- started repair service right away
nImmedRep <- newRef 0

-- total up time for all machines
totalUpTime <- newRef 0.0

repairPerson <- runEventInStartTime $
R.newFCFSResource 1

let machine :: Process ()
machine =
do upTime <-

randomExponentialProcess meanUpTime
liftEvent $
modifyRef totalUpTime (+ upTime)

-- check the resource availability
liftEvent $
do modifyRef nRep (+ 1)
n <- R.resourceCount repairPerson
when (n == 1) $
modifyRef nImmedRep (+ 1)

R.requestResource repairPerson
repairTime <-
randomExponentialProcess meanRepairTime

R.releaseResource repairPerson

machine

runProcessInStartTime machine
runProcessInStartTime machine

let upTimeProp =
do x <- readRef totalUpTime
y <- liftDynamics time
return $ x / (2 * y)

immedProp :: Event Double
immedProp =
do n <- readRef nRep
nImmed <- readRef nImmedRep
return $
fromIntegral nImmed /
fromIntegral n

return $
results
[resultSource
"upTimeProp"
"The long-run proportion of up time (~ 0.6)"

44

upTimeProp,
--
resultSource
"immedProp"
"The proption of time of immediate access (~0.67)"
immedProp,
--
resultSource
"repairPerson"
"The repair person"
repairPerson]

main =
printSimulationResultsInStopTime
printResultSourceInEnglish
model specs

This is almost the same as the previous model. Only we import the resource
by using the qualified import with letter R.

Now if we will try to launch the simulation then we will see something new,
a detailed and verbose dump of the resource state statistics:

$ runghc MachRep2.hs

-- simulation time
t = 1000.0

-- The long-run proportion of up time (~ 0.6)
upTimeProp = 0.5868289484150548

-- The proption of time of immediate access (~0.67)
immedProp = 0.6633249791144528

-- The repair person
repairPerson:

-- the current queue length
queueCount = 0

-- the queue length statistics
queueCountStats = { count = 807, mean = 0.2168308845679987,
std = 0.41208646188082654, min = 0 (t = 0.0),
max = 1 (t = 2.7303659442741184), t in [0.0, 994.4613132444345] }

-- the total wait time
totalWaitTime = 215.62992621944437

-- the wait time
waitTime = { count = 1197, mean = 0.1801419600830781,
std = 0.39685050303019626, min = 0.0, max = 3.6879403657935086 }

-- the current available count
count = 0

-- the available count statistics
countStats = { count = 1588, mean = 0.3903529011661833,
std = 0.48782938996879555, min = 0 (t = 0.6356902271276655),
max = 1 (t = 0.0), t in [0.0, 999.4165355910017] }

-- the current utilisation count
utilisationCount = 1

45

-- the utilisation count statistics
utilisationCountStats = { count = 2394, mean = 0.6096470988338166,
std = 0.48782938996879555, min = 0 (t = 0.0),
max = 1 (t = 0.6356902271276655), t in [0.0, 999.4165355910017] }

The dump is quite self-explanatory. It shows the queue count, its statistics,
the wait time and the corresponding statistics as well as the similar information
for the resource amount and utilisation count. In chapter 4 you will know more
about types that are used for gathering the statistics in Aivika. Here we see
their String representation.

Earlier we saw different charts plotted within the simulation experiments.
As you will see further, we can also use the resource properties in the series
queries when plotting the charts. Moreover, the point is that we can make such
series queries to arbitrary properties of those objects that support the protocol of
the Results type, that is, those ones that can be returned within the simulation
results, for example, the queues and servers to name a few too.

3.6 Referencing to Properties

As we saw, the resource can have additional fields with statistical data. We
can refer to these data either by direct calling the accessor functions, or by
specifying what namely results we want to use. Here we will consider the
second approach.

So, there is the following module that contains helper functions to work
with the simulation results.

module Simulation.Aivika.Results.Transform

Earlier we saw that we can specify what series we want to use when plot-
ting the chart. The same way, we can specify that we want to use a series
corresponding to the resource’s queue count:

resourceCount :: Resource -> ResultTransform

The ResultTransform represents the series, but the Resource type is not
those resource types we saw before. Within the considered module, this is
a separate type, which has one data constructor that allows creating a new
resource of this kind by the specified series.

newtype Resource = Resource ResultTransform

As you can remember, we refer to the series by its name. So, we refer to some
resource by its name and then call the Resource data constructor to create a new
value of the Resource data type. Then we can access to additional series by
functions like resourceCount. The resource itself is a compound series object,
which cannot be plotted directly on the chart as it consists of many series.

We can write something like this

r = Resource $ resultByName "repairPerson"
s = resourceCount r

Below we will plot the chart for the resource utilization. For that, we will
need the following function that returns the corresponding series.

resourceUtilisationCount :: Resource -> ResultTransform

46

3.7 Example: Charts for Resource Properties

Now we will illustrate how we can plot the chart for the resource utilisation in
our previous example. As before, we divide the code into different files, where
the first file will correspond to the model itself, the second file will describe
the experiment and another file will launch the simulation by using one of the
charting back-ends.

3.7.1 Returning Results from Model

Here we just rewrite slightly the code putting the simulation model in a separate
module. There is no essential difference from the code provided in section 3.5.

module Model (model) where

import Control.Monad
import Control.Monad.Trans

import Simulation.Aivika
import qualified Simulation.Aivika.Resource as R

meanUpTime = 1.0
meanRepairTime = 0.5

model :: Simulation Results
model =
do -- number of times the machines have broken down
nRep <- newRef 0

-- number of breakdowns in which the machine
-- started repair service right away
nImmedRep <- newRef 0

-- total up time for all machines
totalUpTime <- newRef 0.0

repairPerson <- runEventInStartTime $
R.newFCFSResource 1

let machine :: Process ()
machine =
do upTime <-

randomExponentialProcess meanUpTime
liftEvent $
modifyRef totalUpTime (+ upTime)

-- check the resource availability
liftEvent $
do modifyRef nRep (+ 1)
n <- R.resourceCount repairPerson
when (n == 1) $
modifyRef nImmedRep (+ 1)

R.requestResource repairPerson
repairTime <-
randomExponentialProcess meanRepairTime

R.releaseResource repairPerson

machine

47

runProcessInStartTime machine
runProcessInStartTime machine

let upTimeProp =
do x <- readRef totalUpTime
y <- liftDynamics time
return $ x / (2 * y)

immedProp :: Event Double
immedProp =
do n <- readRef nRep
nImmed <- readRef nImmedRep
return $
fromIntegral nImmed /
fromIntegral n

return $
results
[resultSource
"upTimeProp"
"The long-run proportion of up time (~ 0.6)"
upTimeProp,
--
resultSource
"immedProp"
"The proption of time of immediate access (~0.67)"
immedProp,
--
resultSource
"repairPerson"
"The repair person"
repairPerson]

3.7.2 Experiment Definition

Now the most exciting thing follows. We define the simulation experiment in
declarative manner. We want to plot the trend for the resource utilization. The
chart will also show the confidence intervals by rule 3-sigma.

module Experiment (experiment, generators) where

import Data.Monoid

import Simulation.Aivika
import Simulation.Aivika.Experiment
import Simulation.Aivika.Experiment.Chart

import qualified Simulation.Aivika.Results.Transform as T

specs = Specs { spcStartTime = 0,
spcStopTime = 1000.0,
spcDT = 1.0,
spcMethod = RungeKutta4,
spcGeneratorType = SimpleGenerator }

experiment :: Experiment
experiment =
defaultExperiment {
experimentSpecs = specs,
experimentRunCount = 1000,
experimentTitle = "MachRep2",

48

experimentDescription = "Example: Charts for Resource Properties" }

upTimeProp = resultByName "upTimeProp"
immedProp = resultByName "immedProp"

repairPerson = T.Resource $ resultByName "repairPerson"
repairPersonUtil = T.resourceUtilisationCount repairPerson

generators :: ChartRendering r => [WebPageGenerator r]
generators =
[outputView defaultExperimentSpecsView,
outputView $ defaultDeviationChartView {
deviationChartTitle = "Resource Utilization",
deviationChartLeftYSeries = repairPersonUtil },

outputView $ defaultFinalStatsView {
finalStatsTitle = "Resource Utilization Stats.",
finalStatsSeries = repairPersonUtil }]

Also we specify that the resulting Web page will show the statistics summary
for the resource utilization. The number of simulation runs is 1000.

Note how we gain access to the resource property. We treat the specified
result source as a resource and then safely call the corresponding accessor.

3.7.3 Charting

Here you can choose one of the charting back-ends. The code is absolutely the
same as it was in section 1.4.3.

3.7.4 Running Simulation Experiment

The simulation experiment consisting of 1000 runs, compiled with option -O2
and run with options +RTS -N, lasted for about 3 seconds on my computer
having the 2-core processor with hyper-threading, i.e. with 4 virtual cores. If
you have an 8-core or 36-core processor, the speed of simulation will even be
more fast.

Table 3.1: The repair person utilisation statistics by data collected
in final time points.

mean 0.5950000000000005
deviation 0.4911376754192414
minimum 0.0
maximum 1.0
count 1000

You can find the corresponding chart on figure 3.1 that shows the trend and
confidence intervals by rule 3-sigma.

49

3.8 Resource Preemption

The Process computation supports a special very useful feature, which is
called a preemption. To be not formally strict, the preemption means that some
discontinuous process can be temporarily interrupted so that it could resume
its execution later. It affects the statistics, affects the resource ownership etc.

In Aivika the process preemption is hidden from direct using. Instead, there
are some data types that provide with high-level interfaces that already use the
preemption under the hood.

One of such data types is a special kind of resource considered in this section.
As before, there are two similar modules that provide with the resource type: a
simple one but optimized for execution and a more full version of the resource
that updates its statistics. For simplicity, we will consider the latter.

This resource resides in its own module and has the predefined queue
strategy. So, there is no need to specify the strategy as we did for more simple
resources in the previous sections.

module Simulation.Aivika.Resource.Preemption

data Resource

As before, there are two constructing functions that allow us to create a new
resource. There is the mandatory initial amount and an optional capacity:

newResource :: Int -> Event Resource
newResourceWithMaxCount :: Int -> Maybe Int -> Event Resource

To acquire the resource, the discontinuous process has to supply with its
priority. If the resource already belongs to another process with less priority,
then the old process is preempted and the current process takes an ownership
of the resource. Otherwise, if the old process has the same priority or higher,
then the current process waits for releasing the resource. Note that the less
value means a higher priority.

requestResourceWithPriority :: Resource -> Double -> Process ()

To release the resource, we call the next function. If some process was
preempted before, then that process resumes its execution from the place where
it was preempted.

releaseResource :: Resource -> Process ()

Unfortunately, the current implementation of the resource preemption has
a limitation. The resource can be released only by that process that acquired
the resource before. If you need a more complex behavior then you probably
should consider using the GPSS-like DSL described in chapter 10.

To reset the resource statistics at some modeling time, we can call the fol-
lowing function.

resetResource :: Resource -> Event ()

In section 6.8 you can find an example of using the resource preemption,
but we need to introduce some new concepts considered further.

50

Figure 3.1: The deviation chart for the resource utilization.

51

Chapter 4

Statistics

Accumulating statistics is an important part of simulation. Aivika uses the ap-
proach, where the statistics summary is treated as an immutable data structure,
which simplifies programming and makes the simulation more safe and robust.

There are two different types of statistics that we can collect. The first one is
based upon observations, while the latter is based on time-dependent samples.

4.1 Statistics based upon Observations

The SamplingStatsdata type is used for accumulating the statistics based upon
observations. An example is the queue wait time.

data SamplingStats a

class Num a => SamplingData a where

emptySamplingStats :: SamplingStats a
addSamplingStats :: a -> SamplingStats a -> SamplingStats a
combineSamplingStats :: SamplingStats a -> SamplingStats a -> SamplingStats a

The first function returns an empty statistics. The addSamplingStats func-
tion takes a new sample value and some statistics, but then returns a new
accumulating statistics. The third function takes two statistics and returns the
combined statistics.

The are two important instances that allow creating numerical statistics.

instance SamplingData Int
instance SamplingData Double

The usual mistake of novices is when they try to use rather a heavy-weight
Var type for collecting statistics. Nevertheless, it is recommended to use the Ref
reference for iterative updating the light-weight SamplingStats values, which
is a more efficient and more simple approach.

By the specified SamplingStatsvalue, we can receive the statistics summary
that includes the number of observations, minimum, maximum, average value,
average square value, variation and deviation, respectively.

52

samplingStatsCount :: SamplingStats a -> Int
samplingStatsMin :: SamplingStats a -> a
samplingStatsMax :: SamplingStats a -> a
samplingStatsMean :: SamplingStats a -> Double
samplingStatsMean2 :: SamplingStats a -> Double
samplingStatsVariance :: SamplingStats a -> Double
samplingStatsDeviation :: SamplingStats a -> Double

Finally, the SamplingStats statistics can be returned as a ResultSource
from the simulation model.

4.2 Statistics for Time Persistent Variables

The TimingStats statistics is very similar to SamplingStats, but only the for-
mer allows collecting samples bound to time points. The corresponding ran-
dom variable is sometimes called time persistent. For instance, the queue length
is an example of such a time persistent variable.

data TimingStats a

class Num a => TimingData a where

emptyTimingStats :: TimingStats a
addTimingStats :: Double -> a -> TimingStats a -> TimingStats a

As before, we can create an empty statistics, but when updating the statistics,
we have also to specify the corresponding time in the first argument passing it
to the addTimingStats function. Moreover, there is no analog of the combining
function for this type of statistics.

By the way, namely because of need to specify the time, the resource con-
structor from section 3.4 returns an action within the Event computation, not
within the Simulation one as we might expect. We just initialize some resource
statistics precisely at time of creating the resource.

The TimingStats returns more data. At first, it returns the same set of prop-
erties: the number of samples, minimum, maximum, average value, average
square value, variance and deviation.

timingStatsCount :: TimingStats a -> Int
timingStatsMin :: TimingStats a -> a
timingStatsMax :: TimingStats a -> a
timingStatsMean :: TimingData a => TimingStats a -> Double
timingStatsMean2 :: TimingData a => TimingStats a -> Double
timingStatsVariance :: TimingData a => TimingStats a -> Double
timingStatsDeviation :: TimingData a => TimingStats a -> Double

Here the number of samples has already a quite conditional meaning unlike
the previous type of statistics based upon observations.

Additionally, the TimingStats value returns the last accumulated value,
time at which the minimum is attained, time as which the maximum is attained,
start time of sampling, last time of sampling, sum of values and sum of square
values, respectively.

timingStatsLast :: TimingStats a -> a
timingStatsMinTime :: TimingStats a -> Double
timingStatsMaxTime :: TimingStats a -> Double

53

timingStatsStartTime :: TimingStats a -> Double
timingStatsLastTime :: TimingStats a -> Double
timingStatsSum :: TimingStats a -> Double
timingStatsSum2 :: TimingStats a -> Double

The are also two important instances that allow creating numerical statistics
of this kind.

instance TimingData Int
instance TimingData Double

As before, the TimingStats value can be returned from the model as a
ResultSource.

We can see that only the first two moments are calculated by these two types
SamplingStats and TimingStats, which should cover the most of use cases. If
you need a more detailed statistical analysis, then you probably need to gather
and process the statistics themselves.

54

Chapter 5

Signals and Tasks

In Aivika there is a signalling mechanism which is based on ideas of the .NET
IObservable interface. The signal is something that notifies its listeners about
changes, events and so on. The listener may subscribe to receiving the signal
values, but then unsubscribe.

We can also define a task to represent the discontinuous processes running
in foreground. By triggering the corresponding signal, the task will notify us
that the process has finished and returned the result.

5.1 Signaling

The following monoid represents a signal that notifies about occurring some
condition.

data Signal a =
Signal { handleSignal :: (a -> Event ()) -> Event DisposableEvent }

The handleSignal function takes a signal and its handler, subscribes the
handler for receiving the signal values and then returns a nested computation
of the DisposableEvent type that being applied will unsubscribe the specified
handler from receiving the signal.

The act of unsubscribing from the signal occurs in a time. Therefore, the
nested computation returned has actually type Event () hidden under the
facade of the convenient type name.

disposeEvent :: DisposableEvent -> Event ()

If we are not going to unsubscribe at all, then we can ignore the nested
computation.

handleSignal_ :: Signal a -> (a -> Event ()) -> Event ()

We can treat the signals in a functional way, transforming, or merging, or
filtering them with help of combinators.

instance Monoid (Signal a)
instance Functor Signal

filterSignal :: (a -> Bool) -> Signal a -> Signal a

55

The Ref reference and Var variable provide signals that notify about chang-
ing their state.

refChanged :: Ref a -> Signal a
varChanged :: Var a -> Signal a

We can create an origin of the signal manually. Distinguishing the origin
from the signal allows us to publish the signal with help of a pure function.
But we have to trigger the signal within a computation synchronized with the
event queue, though.

data SignalSource a

newSignalSource :: Simulation (SignalSource a)

publishSignal :: SignalSource a -> Signal a
triggerSignal :: SignalSource a -> a -> Event ()

5.2 Tasks

There is a link between the signals and discontinuous processes, which is
expressed by the following function that suspends the current process until a
signal comes.

processAwait :: Signal a -> Process a

Only one signal value is expected, but then the process automatically un-
subscribes from the specified signal.

In Aivika there is an opposite transformation from the Process computa-
tion to a Signal value, but it is a little bit complicated as the process can be
actually canceled, or an IO exception can be raised within the simulation. The
corresponding transformation is defined with help of the Task type.

runTask :: Process a -> Event (Task a)

Here we run the specified process in background and immediately return
the corresponding task within the Event computation. Later we can request
for the result of the underlying Process computation, whether it was finished
successfully, or anIO exception had occurred, or the computation was cancelled.
Please refer to the Aivika documentation for detail.

Using signals, the mentioned earlier function timeoutProcess is imple-
mented. It allows us to run a sub-process within the specified time-out. The
function creates an internal signal source. The launched sub-process is try-
ing to compute the result and in case of success it notifies the parent process,
triggering the corresponding signal. Only it is worth noting again that the
timeoutProcess function is very slow.

The signals are also used in the memoProcess function. It takes the specified
process and returns a new resulting process that will always return the same
value within the current simulation run regardless of that how many times that
process will be started. The value is calculated only once for each simulation
run but all other process instances await the signal for receiving the result.

Finally, the signals are extensively used in simulation experiments. Namely
by triggering the corresponding signal, the chart plotters and other renderers
receive the information that the specified result source has changed.

56

5.3 Composites

You could notice that the act of subscribing to receiving the signal values returns
the DisposableEventvalue within the Event computation. This is so a common
pattern, because of which a separate monad was introduced.

data Composite a

runComposite :: Composite a -> DisposableEvent -> Event (a, DisposableEvent)
runComposite_ :: Composite a -> Event a

The first run function allows building a composite that can be then destroyed
by calling the corresponding DisposableEvent computation.

When constructing the composite, we can add our own future destroying
action. This is the main feature of the considered computation.

disposableComposite :: DisposableEvent -> Composite ()

The Composite computation is based on the Event computation. This is es-
sentially the Event computation, but which remembers all its DisposableEvent
actions, which can be then applied when destroying the composite. The
Composite computation is often used together with signals.

Parameter a

liftParameter

��
Simulation a

liftSimulation

��
Dynamics a

runDynamics

HH

liftDynamics

��
Event a

runEvent

II

liftEvent

��

liftEvent // Composite a
runComposite

mm

Process a

runProcess

HH

57

Chapter 6

Queue Network

6.1 Queues

Sometimes we need a location in the network where entities wait for service[12].
It is modeled in Aivika with help of bounded and unbounded queues.

For brevity, only the bounded queue is considered here as this is a more
difficult case.

data Queue si sm so a

This type represents a queue using the specified strategies for enqueueing
(input), si, internal storing (in memory), sm, and dequeueing (output), so,
where the type parameter a denotes the type of items stored in the queue.

◦

enqueue

��

◦

◦

enqueue

◦

. . . ◦
storing // ◦

dequeue

FF

dequeue

>>

dequeue

. . .

◦

enqueue

>>

◦

There are type synonyms for the most important use cases:

type FCFSQueue a = Queue FCFS FCFS FCFS a
type LCFSQueue a = Queue FCFS LCFS FCFS a
type SIROQueue a = Queue FCFS SIRO FCFS a
type PriorityQueue a = Queue FCFS StaticPriorities FCFS a

These synonyms use the FIFO strategy both for the enqueue and dequeue
requests, which seems to be reasonable for many cases. However, we can
define a bounded queue that would process all pending dequeue requests, for
example, in random (SIRO) or opposite (LIFO) order in case of enqueueing an
item in the empty queue. Here we operate on the same queue strategies that
we introduced in section 3.1.

There are different functions that allow creating a new empty queue by the
specified capacity.

58

newQueue :: (QueueStrategy si, QueueStrategy sm, QueueStrategy so)
=> si -> sm -> so -> Int -> Event (Queue si sm so a)

newFCFSQueue :: Int -> Event (FCFSQueue a)
newLCFSQueue :: Int -> Event (LCFSQueue a)
newSIROQueue :: Int -> Event (SIROQueue a)
newPriorityQueue :: Int -> Event (PriorityQueue a)

The queue is created within the Event computation as we have to know the
current simulation time to start gathering the timing statistics for the queue
size. The statistics is initiated at time of invoking the computation.

There are different enqueue functions. The most simple one is provided
below.

enqueue :: (EnqueueStrategy si, EnqueueStrategy sm, DequeueStrategy so)
=> Queue si sm so a -> a -> Process ()

It suspends the process if the bounded queue is full. Therefore, this action
is returned as the Process computation.

Also we can try to enqueue the specified item and if the queue is full then
the item is counted as lost.

enqueueOrLost :: (EnqueueStrategy sm, DequeueStrategy so)
=> Queue si sm so a -> a -> Event Bool

This action cannot already suspend the simulation activity, but it returns
the Event computation of a flag indicating whether the item was successfully
stored in the queue.

The simplest dequeue operation suspends the process while the queue is
empty. The result is the Process computation again.

dequeue :: (DequeueStrategy si, DequeueStrategy sm, EnqueueStrategy so)
=> Queue si sm so a -> Process a

Here the very type signatures specify whether the corresponding action
may suspend the simulation activity, or the action is performed immediately.

There are similar enqueue and dequeue functions that allow specifying the
priorities if the corresponding queue strategy supports them.

The queue has a lot of counters that are updated during simulation. Actually,
these counters are what we are mostly interested in.

For example, we can request the queue for its size and wait time statistics.
We considered statistics data types in chapter 4.

queueCountStats :: Queue si sm so a -> Event (TimingStats Int)
queueWaitTime :: Queue si sm so a -> Event (SamplingStats Double)

Here SamplingStats is a relatively light-weight and immutable data type
that comprises the statistics summary collected for the queue’s wait time. It
returns the average value, variance, deviation, minimum, maximum and the
number of samples. The TimingStats provides additional information about
the times at which the minimum and maximum values were gained. Also
the timing statistics takes into account the modeling time at which data are
gathered.

To reset the queue statistics at the current modeling time, we can call the
following function:

59

resetQueue :: Queue si sm so a -> Event ()

We can request for the queue properties in the simulation experiment like
that how we requested for the resource properties in section 3.6.

import qualified Simulation.Aivika.Results.Transform as T

q = T.Queue $ resultByName "someQueue"
k = T.tr $ T.queueWaitTime q

Below is shown how the queues can be processed using more high level
computations that operate on the stream of data.

6.2 Stream

Many things become significantly more simple for reasoning and understand-
ing after we introduce a concept of infinite stream of data that come with some
delays in the modeling time.

newtype Stream a = Cons { runStream :: Process (a, Stream a) }

This is a kind of the famous cons-cell, where the cell is already returned
within the Process computation. It means that the stream data can be dis-
tributed in the modeling time and there can be time gaps between arrivals of
sequential data.

◦ // Process (a, . . .
runStream // Process (a, . . . // . . .

The stream represents sequential data. For example, if you need the process-
ing of parallel transacts then you should probably consider using the GPSS-like
DSL, which is also supported by Aivika. It is described in section 10.

The streams themselves are well-known in the functional programming for
a long time[1]. It is obvious that we can map, filter, and transform the streams.

Now it is more interesting what new properties we can gain by introducing
the Process computation in the cons-cell definition. At least, the Stream type
is a monoid.

Passivating the underlying process forever1, we receive a stream that never
returns data.

emptyStream :: Stream a

Moreover, we can merge two streams applying the FCFS strategy when
enqueueing the input data.

mergeStreams :: Stream a -> Stream a -> Stream a

Actually, the latter is a partial case of more general functions that allow
concatenating the streams like a multiplexor.

1The underlying process can still be canceled, though.

60

concatStreams :: [Stream a] -> Stream a
concatStreams = concatQueuedStreams FCFS

concatQueuedStreams :: EnqueueStrategy s => s -> [Stream a] -> Stream a

concatPriorityStreams ::
PriorityQueueStrategy s p => s -> [Stream (p, a)] -> Stream a

The functions use the resources to concatenate different infinite streams of
data.

There is an opposite ability to split the input stream into the specified
number of output streams like a demultiplexor. We have to do it to model a
parallel work of services.

splitStream :: Int -> Stream a -> Simulation [Stream a]
splitStream = splitStreamQueueing FCFS

splitStreamQueueing ::
EnqueueStrategy s
=> s -> Int -> Stream a -> Simulation [Stream a]

splitStreamPrioritising ::
PriorityQueueStrategy s p
=> s -> [Stream p] -> Stream a -> Simulation [Stream a]

An implementation of the second function is provided below for demon-
strating the approach. Only we need an auxiliary function that creates a new
stream as a result of the repetitive execution of some process.

repeatProcess :: Process a -> Stream a

Here is the splitStreamQueueing function itself:

splitStreamQueueing s n x =
do ref <- liftIO $ newIORef x
res <- newResource s 1
let reader =

usingResource res $
do p <- liftIO $ readIORef ref
(a, xs) <- runStream p
liftIO $ writeIORef ref xs
return a

return $ map (\i -> repeatProcess reader) [1..n]

A key idea is that many simulation models can be defined as a network of
the Stream computations.

Such a network must have external input streams, usually random streams
like these ones.

randomUniformStream :: Double -> Double -> Stream (Arrival Double)
randomNormalStream :: Double -> Double -> Stream (Arrival Double)
randomExponentialStream :: Double -> Stream (Arrival Double)
randomErlangStream :: Double -> Int -> Stream (Arrival Double)
randomPoissonStream :: Double -> Stream (Arrival Int)
randomBinomialStream :: Double -> Int -> Stream (Arrival Int)

Here a value of type Arrival a contains the modeling time at which the
external event has arrived, the event itself of type a and the delay time which
has passed from the time of arriving the previous event.

61

To process the input stream in parallel, we split the input with help of the
splitStream function, process new streams in parallel and then concatenate the
intermediate results into one output stream using the concatStreams function.
Later will be provided the processorParallel function that does namely this.

To process the specified stream sequentially by some servers, we need a
helper function that would read one more data item in advance, playing a role
of the intermediate buffer between the servers.

prefetchStream :: Stream a -> Stream a

Now we need the moving force that would run the whole network of
streams.

sinkStream :: Stream a -> Process ()

It infinitely reads data from the specified stream. This is like a terminator
in GPSS.

6.3 Passive Streams and Active Signals

At least, there are two different types of data sources: streams and signals.
The data can be requested explicitly. If we do not request them then they

do not come. This is what the Stream computation defines. Only the random
streams considered in the previous section check that the data are requested
permanently and in order. If the random streams are requested wrong then
there will be a run-time error. This is something like a sanity check that the
model has no logical errors. But the streams themselves, in general, have no
such a check.

Therefore, you should be very careful, when using the Stream computa-
tion. The stream must be permanently requested. You should either use the
sinkStream terminator, or put the items in the queue, or exclude the items from
the simulation, for example, if the queue is full.

Probably, the GPSS-like DSL described in chapter 10 is more safe and easy-
to-use as it has no these constraints. Also that DSL is very powerful. Only it
still uses streams when defining generators.

However, the streams can be useful for modeling many queue networks. For
example, it is natural to represent the arrival of orders as the Stream computa-
tion.

Unlike the streams, the data in signals arrive regardless of that we process
them or not. We can subscribe to handing the Signal values and then we will
receive these values. If we do not subscribe, then the signal will trigger its
values anyway. Therefore, we can say that the Signal computation is active,
while the Stream computation is passive.

For example, we can model WiFi signals as the Signal computation. This
computation can be useful in other cases too.

6.4 Processor

Having a stream of data, it would be natural to operate on its transformation
which we will call a processor:

62

newtype Processor a b = Processor { runProcessor :: Stream a -> Stream b }

Here the choice of this name was not arbitrary [4]. This type seems to be
an Arrow, but the arrow can be interpreted as some kind of processor. Only
the code will probably be slow if you will decide to use the proc-notation as the
Arrow instance for this particular type is not very optimal.

We can construct the processors directly from the streams. Omitting the
obvious cases, we consider only the most important ones.

A new processor can be created by the specified handling function produc-
ing the Process computation.

arrProcessor :: (a -> Process b) -> Processor a b

Also we can use an accumulator to save an intermediate state of the proces-
sor. When processing the input stream and generating an output one, we can
update the state.

accumProcessor :: (acc -> a -> Process (acc, b)) -> acc -> Processor a b

An arbitrary number of processors can be united to work in parallel using
the default FCFS queue strategy:

processorParallel :: [Processor a b] -> Processor a b

Its implementation is based on using the multiplexing an demultiplexing
functions considered before. We split the input stream, process the interme-
diated streams in parallel and then concatenate the resulting streams into one
output steam.

There are other versions of the processParallel function, where we can
specify the queue strategies and priorities if required.

To create a sequence of autonomously working processors, we can use the
prefetching function considered above too:

prefetchProcessor :: Processor a a
prefetchProcessor = Processor prefetchStream

For example, having two complementing processors p1 and p2, we can
create two new processors, where the first one implies a parallel work, while
another implies a sequential processing:

pPar = processorParallel [p1, p2]

◦
p1 // ◦

merge

��
◦

split
??

split

��

◦

◦
p2 // ◦

merge
??

pSeq = p1 >>> prefetchProcessor >>> p2

63

◦
p1 // ◦

pre f etch// ◦
p2 // ◦

Basing on this approach, we can model in Haskell quite complex queue
networks in an easy-to-use high-level declarative manner.

Regarding the queues themselves, we can model them using rather general-
purpose helper processors like this one:

queueProcessor :: (a -> Process ())
-- ^ enqueue the input item
-> Process b
-- ^ dequeue an output item
-> Processor a b
-- ^ the buffering processor

An idea is that there is a plenty of cases how the queues could be united
in the network. When enqueueing, we can either wait while the queue is
full, or we can count such an item as lost. We can use the priorities for the
Process computations that enqueue or dequeue. Moreover, different processes
can enqueue and dequeue simultaneously.

Therefore, the author of Aivika decided to introduce such general-purpose
helper functions for modeling the queues, where the details of how the queues
are simulated can be shortly described with help of combinators like enqueue,
enqueueOrLost and dequeue stated above. The examples are included in the
Aivika distribution.

Unfortunately, the Processor type is not ArrowLoop by the same reason
why the Process monad is not MonadFix — continuations. Nevertheless, we
can model the queue networks with loopbacks using the intermediate queues
to delay the stream. One of the possible functions is provided below.

queueProcessorLoopSeq ::
(a -> Process ())
-- ^ enqueue the input item
-> Process c
-- ^ dequeue an item for the further processing
-> Processor c (Either e b)
-- ^ process and then decide what values of type @e@
-- should be processed in the loop (condition)
-> Processor e a
-- ^ process in the loop and then return a value
-- of type @a@ to the queue again (loop body)
-> Processor a b
-- ^ the buffering processor

An example model that would use the streams and queue processors is
provided further in section 6.7.

Probably, here the reader will find the GPSS-like DSL described in chapter
10 more convenient for using in his/her models. Aivika naturally supports this
DSL too. It is also based on the Process computation.

Using the processors, we can model a complicated enough behavior. For
example, we can model the Round-Robbin strategy[17] of the processing.

roundRobbinProcessor :: Processor (Process Double, Process a) a

It tries to perform a task within the specified timeout. If the task times
out, then it is canceled and returned to the processor again; otherwise, the

64

successful result is redirected to output. The timeout and task are passed in to
the processor from the input stream.

Both the processors and streams allow modeling the process-oriented sim-
ulation on a higher level in a way somewhere similar to that one which is
described in book [12] by A. Alan B. Pritsker and Jean J. O’Reilly.

At the same time, all computations are well integrated in Aivika and we can
combine different approaches within the same model, for example, combining
the process-oriented simulation with agent-based modeling.

6.5 Server

In Aivika there is a Server data type that allows modeling a working place and
that gathers its statistics during simulation.

data Server s a b

newServer :: (a -> Process b) -> Simulation (Server () a b)
newStateServer :: (s -> a -> Process (s, b)) -> s -> Simulation (Server s a b)

To create a server, we provide a handling function that takes the input, pro-
cess it and generates an output within the Process computation. The handling
function may use an accumulator to save the server state when processing.

To involve the server in simulation, we can use its processor that performs
a service and updates the internal counters.

serverProcessor :: Server s a b -> Processor a b

For example, when preparing the simulation results to output, we can re-
quest for the statistics of the time spent by the server while processing the
tasks.

serverProcessingTime :: Server s a b -> Event (SamplingStats Double)

There is one subtle thing. Each time we use the serverProcessor function
result, we actually create a new processor that refers to the same server and
hence updates the same statistics counters. It can be useful if we are going to
gather the statistics for a group of servers working in parallel, although the
best practice would be to use the serverProcessor function only once per each
server.

To reset the server statistics at the current modeling time, we can call the
following function:

resetServer :: Server s a b -> Event ()

We can request for the server properties in the simulation experiment like
that how we requested for the resource properties in section 3.6.

import qualified Simulation.Aivika.Results.Transform as T

s = T.Server $ resultByName "someServer"
k = T.tr $ T.serverProcessingTime s

65

6.6 Measuring Processing Time

To measure the processing time of orders, a simple object called ArrivalTimer
is often used in the examples.

data ArrivalTimer

newArrivalTimer :: Simulation ArrivalTimer

arrivalTimerProcessor :: ArrivalTimer -> Processor (Arrival a) (Arrival a)
arrivalProcessingTime :: ArrivalTimer -> Event (SamplingStats Double)

Each time you apply the arrivalTimerProcessor function result, the corre-
sponding internal counter is updated to measure the processing time of arrivals
that contain the exact time of entering the simulation model. Then this counter
is returned by the arrivalProcessingTime function as the statistics summary.

But usually, the processing time is requested for within simulation experi-
ments by the code like this:

import qualified Simulation.Aivika.Results.Transform as T

t = T.ArrivalTimer $ resultByName "someTimer"
k = T.tr $ T.arrivalProcessingTime t

6.7 Example: Queue Network

To illustrate how the streams and processors can be used for modeling, let us
consider a model [12, 17] of inspection and adjustment stations on a production
line. This is a model of the workflow with a loop. Also there are two unbounded
queues.

Assembled television sets move through a series of testing stations
in the final stage of their production. At the last of these stations,
the vertical control setting on the TV sets is tested. If the setting is
found to be functioning improperly, the offending set is routed to an
adjustment station where the setting is adjusted. After adjustment,
the television set is sent back to the last inspection station where the
setting is again inspected. Television sets passing the final inspec-
tion phase, whether for the first time of after one or more routings
through the adjustment station, are routed to a packing area.
The time between arrivals of television sets to the final inspection
station is uniformly distributed between 3.5 and 7.5 minutes. Two
inspectors work side-by-side at the final inspection station. The time
required to inspect a set is uniformly distributed between 6 and 12
minutes. On the average, 85 percent of the sets pass inspection
and continue on the packing department. The other 15 percent
are routed to the adjustment station which is manned by a single
worker. Adjustment of the vertical control setting requires between
20 and 40 minutes, uniformly distributed.
The inspection station and adjustor are to be simulated for 480 min-
utes to estimate the time to process television sets through the final
production stage and to determine the utilization of the inspectors
and the adjustors.

66

6.7.1 Returning Results from Model

Below is provided the model defined in a quite declarative and straightforward
way.

module Model (model) where

import Prelude hiding (id, (.))

import Control.Monad
import Control.Monad.Trans
import Control.Arrow
import Control.Category (id, (.))

import Simulation.Aivika
import Simulation.Aivika.Queue.Infinite

-- the minimum delay of arriving the next TV set
minArrivalDelay = 3.5

-- the maximum delay of arriving the next TV set
maxArrivalDelay = 7.5

-- the minimum time to inspect the TV set
minInspectionTime = 6

-- the maximum time to inspect the TV set
maxInspectionTime = 12

-- the probability of passing the inspection phase
inspectionPassingProb = 0.85

-- how many are inspection stations?
inspectionStationCount = 2

-- the minimum time to adjust an improper TV set
minAdjustmentTime = 20

-- the maximum time to adjust an improper TV set
maxAdjustmentTime = 40

-- how many are adjustment stations?
adjustmentStationCount = 1

-- create an inspection station (server)
newInspectionStation =
newServer $ \a ->
do holdProcess =<<

(liftParameter $
randomUniform minInspectionTime maxInspectionTime)

passed <-
liftParameter $
randomTrue inspectionPassingProb

if passed
then return $ Right a
else return $ Left a

-- create an adjustment station (server)
newAdjustmentStation =
newServer $ \a ->
do holdProcess =<<

(liftParameter $

67

randomUniform minAdjustmentTime maxAdjustmentTime)
return a

model :: Simulation Results
model = mdo
-- to count the arrived TV sets for inspecting and adjusting
inputArrivalTimer <- newArrivalTimer
-- it will gather the statistics of the processing time
outputArrivalTimer <- newArrivalTimer
-- define a stream of input events
let inputStream =

randomUniformStream minArrivalDelay maxArrivalDelay
-- create a queue before the inspection stations
inspectionQueue <-
runEventInStartTime newFCFSQueue

-- create a queue before the adjustment stations
adjustmentQueue <-
runEventInStartTime newFCFSQueue

-- create the inspection stations (servers)
inspectionStations <-
forM [1 .. inspectionStationCount] $ _ ->
newInspectionStation

-- create the adjustment stations (servers)
adjustmentStations <-
forM [1 .. adjustmentStationCount] $ _ ->
newAdjustmentStation

-- a processor loop for the inspection stations’ queue
let inspectionQueueProcessorLoop =

queueProcessorLoopSeq
(liftEvent . enqueue inspectionQueue)
(dequeue inspectionQueue)
inspectionProcessor
(adjustmentQueueProcessor >>> adjustmentProcessor)

-- a processor for the adjustment stations’ queue
let adjustmentQueueProcessor =

queueProcessor
(liftEvent . enqueue adjustmentQueue)
(dequeue adjustmentQueue)

-- a parallel work of the inspection stations
let inspectionProcessor =

processorParallel (map serverProcessor inspectionStations)
-- a parallel work of the adjustment stations
let adjustmentProcessor =

processorParallel (map serverProcessor adjustmentStations)
-- the entire processor from input to output
let entireProcessor =

arrivalTimerProcessor inputArrivalTimer >>>
inspectionQueueProcessorLoop >>>
arrivalTimerProcessor outputArrivalTimer

-- start simulating the model
runProcessInStartTime $
sinkStream $ runProcessor entireProcessor inputStream

-- return the simulation results in start time
return $
results
[resultSource
"inspectionQueue" "the inspection queue"
inspectionQueue,
--
resultSource
"adjustmentQueue" "the adjustment queue"
adjustmentQueue,

68

--
resultSource
"inputArrivalTimer" "the input arrival timer"
inputArrivalTimer,
--
resultSource
"outputArrivalTimer" "the output arrival timer"
outputArrivalTimer,
--
resultSource
"inspectionStations" "the inspection stations"
inspectionStations,
--
resultSource
"adjustmentStations" "the adjustment stations"
adjustmentStations]

6.7.2 Experiment Definition

The model returns a couple of data sources. We create an experiment that shows
the data from different perspectives. The names should be self-explanatory.

module Experiment (experiment, generators) where

import Data.Monoid

import Control.Arrow

import Simulation.Aivika
import Simulation.Aivika.Experiment
import Simulation.Aivika.Experiment.Chart

import qualified Simulation.Aivika.Results.Transform as T

-- | The simulation specs.
specs = Specs { spcStartTime = 0.0,

spcStopTime = 480.0,
spcDT = 0.1,
spcMethod = RungeKutta4,
spcGeneratorType = SimpleGenerator }

-- | The experiment.
experiment :: Experiment
experiment =
defaultExperiment {
experimentSpecs = specs,
experimentRunCount = 1000,
-- experimentRunCount = 10,
experimentTitle = "Inspection and Adjustment Stations on " ++

"a Production Line (the Monte-Carlo simulation)" }

inputArrivalTimer = T.ArrivalTimer $ resultByName "inputArrivalTimer"
outputArrivalTimer = T.ArrivalTimer $ resultByName "outputArrivalTimer"

inspectionStations = T.Server $ resultByName "inspectionStations"
adjustmentStations = T.Server $ resultByName "adjustmentStations"

inspectionQueue = T.Queue $ resultByName "inspectionQueue"
adjustmentQueue = T.Queue $ resultByName "adjustmentQueue"

resultProcessingTime :: ResultTransform

69

resultProcessingTime =
(T.tr $ T.arrivalProcessingTime inputArrivalTimer) <>
(T.tr $ T.arrivalProcessingTime outputArrivalTimer)

resultProcessingFactor :: ResultTransform
resultProcessingFactor =
(T.serverProcessingFactor inspectionStations) <>
(T.serverProcessingFactor adjustmentStations)

inspectionQueueCount = T.queueCount inspectionQueue
inspectionQueueCountStats = T.tr $ T.queueCountStats inspectionQueue
inspectionWaitTime = T.tr $ T.queueWaitTime inspectionQueue

adjustmentQueueCount = T.queueCount adjustmentQueue
adjustmentQueueCountStats = T.tr $ T.queueCountStats adjustmentQueue
adjustmentWaitTime = T.tr $ T.queueWaitTime adjustmentQueue

generators :: ChartRendering r => [WebPageGenerator r]
generators =
[outputView defaultExperimentSpecsView,
outputView defaultInfoView,
outputView $ defaultFinalStatsView {
finalStatsTitle = "Arrivals",
finalStatsSeries = resultProcessingTime },

outputView $ defaultDeviationChartView {
deviationChartTitle = "The processing factor (chart)",
deviationChartWidth = 1000,
deviationChartRightYSeries = resultProcessingFactor },

outputView $ defaultFinalHistogramView {
finalHistogramTitle = "The processing factor (histogram)",
finalHistogramWidth = 1000,
finalHistogramSeries = resultProcessingFactor },

outputView $ defaultFinalStatsView {
finalStatsTitle = "The processing factor (statistics)",
finalStatsSeries = resultProcessingFactor },

outputView $ defaultDeviationChartView {
deviationChartTitle = "The inspection queue size (chart)",
deviationChartWidth = 1000,
deviationChartRightYSeries =
inspectionQueueCount <> inspectionQueueCountStats },

outputView $ defaultFinalStatsView {
finalStatsTitle = "The inspection queue size (statistics)",
finalStatsSeries = inspectionQueueCountStats },

outputView $ defaultDeviationChartView {
deviationChartTitle = "The inspection queue wait time (chart)",
deviationChartWidth = 1000,
deviationChartRightYSeries = inspectionWaitTime },

outputView $ defaultFinalStatsView {
finalStatsTitle = "The inspection queue wait time (statistics)",
finalStatsSeries = inspectionWaitTime },

outputView $ defaultDeviationChartView {
deviationChartTitle = "The adjustment queue size (chart)",
deviationChartWidth = 1000,
deviationChartRightYSeries =
adjustmentQueueCount <> adjustmentQueueCountStats },

outputView $ defaultFinalStatsView {
finalStatsTitle = "The adjustment queue size (statistics)",
finalStatsSeries = adjustmentQueueCountStats },

outputView $ defaultDeviationChartView {
deviationChartTitle = "The adjustment queue wait time (chart)",
deviationChartWidth = 1000,
deviationChartRightYSeries = adjustmentWaitTime },

70

outputView $ defaultFinalStatsView {
finalStatsTitle = "The adjustment queue wait time (statistics)",
finalStatsSeries = adjustmentWaitTime }]

6.7.3 Charting

Here you can choose one of the charting back-ends. The code is absolutely the
same as it was in section 1.4.3.

6.7.4 Running Simulation Experiment

On my laptop the specified simulation experiment lasted for 15 seconds, when
using the Caro-based charting backend, and it laster for 28 seconds, when using
the Diagrams-based charting backed.

You can see one of the resulting charts on figure 6.1.

Figure 6.1: The deviation chart for the utilization factor.

6.8 Example: Resource Preemption

Now it is time to fulfil the promise. Below is represented the example that
demonstrates the use of resource preemption. The example models the machine
tools with breakdowns [12, 17].

Jobs arrive to a machine tool on the average of one per hour. The dis-
tribution of these interarrival times is exponential. During normal
operation, the jobs are processed on a first-in, first-out basis. The
time to process a job in hours is normally distributed with a mean
of 0.5 and a standard deviation of 0.1. In addition to the processing
time, there is a set up time that is uniformly distributed between 0.2
and 0.5 of an hour. Jobs that have been processed by the machine
tool are routed to a different section of the shop and are considered
to have left the machine tool area.

71

The machine tool experiences breakdowns during which time it can
no longer process jobs. The time between breakdowns is normally
distributed with a mean of 20 hours and a standard deviation of
2 hours. When a breakdown occurs, the job being processed is
removed from the machine tool and is placed at the head of the
queue of jobs waiting to be processed. Jobs preempted restart from
the point at which they were interrupted.

When the machine tool breaks down, a repair process is initiated
which is accomplished in three phases. Each phase is exponentially
distributed with a mean of 3/4 of an hour. Since the repair time is the
sum of independent and identically distributed exponential random
variables, the repair time is Erlang distributed. The machine tool is
to be analyzed for 500 hours to obtain information on the utilization
of the machine tool and the time required to process a job. Statistics
are to be collected for thousand simulation runs.

6.8.1 Returning Results from Model

As we did before, we write a model that returns the simulation results. Here
we use the unbounded queue as well as the resource preemption considered
earlier in section 3.8.

module Model (model) where

import Control.Monad
import Control.Monad.Trans
import Control.Category

import Data.Monoid
import Data.List

import Simulation.Aivika
import qualified Simulation.Aivika.Queue.Infinite as IQ
import qualified Simulation.Aivika.Resource.Preemption as PR

-- | How often do jobs arrive to a machine tool (exponential)?
jobArrivingMu = 1

-- | A mean of time to process a job (normal).
jobProcessingMu = 0.5

-- | The standard deviation of time to process a job (normal).
jobProcessingSigma = 0.1

-- | The minimum set-up time (uniform).
minSetUpTime = 0.2

-- | The maximum set-up time (uniform).
maxSetUpTime = 0.5

-- | A mean of time between breakdowns (normal).
breakdownMu = 20

-- | The standard deviation of time between breakdowns (normal).
breakdownSigma = 2

-- | A mean of each of the three repair phases (Erlang).

72

repairMu = 3/4

-- | A priority of the job (less is higher)
jobPriority = 1

-- | A priority of the breakdown (less is higher)
breakdownPriority = 0

-- | The simulation model.
model :: Simulation Results
model = do
-- create an input queue
inputQueue <- runEventInStartTime IQ.newFCFSQueue
-- a counter of jobs completed
jobsCompleted <- newArrivalTimer
-- a counter of interrupted jobs
jobsInterrupted <- newRef (0 :: Int)
-- create an input stream
let inputStream =

randomExponentialStream jobArrivingMu
-- create a preemptible resource
tool <- runEventInStartTime $ PR.newResource 1
-- the machine setting up
machineSettingUp <-
newPreemptibleRandomUniformServer True minSetUpTime maxSetUpTime

-- the machine processing
machineProcessing <-
newPreemptibleRandomNormalServer True jobProcessingMu jobProcessingSigma

-- the machine breakdown
let machineBreakdown =

do randomNormalProcess_ breakdownMu breakdownSigma
PR.usingResourceWithPriority tool breakdownPriority $
randomErlangProcess_ repairMu 3

machineBreakdown
-- start the process of breakdowns
runProcessInStartTime machineBreakdown
-- update a counter of job interruptions
runEventInStartTime $
handleSignal_ (serverTaskPreemptionBeginning machineProcessing) $ \a ->
modifyRef jobsInterrupted (+ 1)

-- define the queue network
let network =

queueProcessor
(\a -> liftEvent $ IQ.enqueue inputQueue a)
(IQ.dequeue inputQueue) >>>
(withinProcessor $ PR.requestResourceWithPriority tool jobPriority) >>>
serverProcessor machineSettingUp >>>
serverProcessor machineProcessing >>>
(withinProcessor $ PR.releaseResource tool) >>>
arrivalTimerProcessor jobsCompleted

-- start the machine tool
runProcessInStartTime $
sinkStream $ runProcessor network inputStream

-- return the simulation results in start time
return $
results
[resultSource
"inputQueue" "the queue of jobs"
inputQueue,
--
resultSource
"machineSettingUp" "the machine setting up"

73

machineSettingUp,
--
resultSource
"machineProcessing" "the machine processing"
machineProcessing,
--
resultSource
"jobsInterrupted" "a counter of the interrupted jobs"
jobsInterrupted,
--
resultSource
"jobsCompleted" "a counter of the completed jobs"
jobsCompleted,
--
resultSource
"tool" "the machine tool"
tool]

6.8.2 Experiment Definition

The simulation experiment defines 1000 runs. We are interested in the process-
ing time, queue wait time, queue size and the machine tool utilization, which
is denoted here as the server processing factor or relative processing time.

module Experiment (experiment, generators) where

import Data.Monoid

import Control.Arrow

import Simulation.Aivika
import Simulation.Aivika.Experiment
import Simulation.Aivika.Experiment.Chart

import qualified Simulation.Aivika.Results.Transform as T

-- | The simulation specs.
specs = Specs { spcStartTime = 0.0,

spcStopTime = 500.0,
spcDT = 0.1,
spcMethod = RungeKutta4,
spcGeneratorType = SimpleGenerator }

-- | The experiment.
experiment :: Experiment
experiment =
defaultExperiment {
experimentSpecs = specs,
experimentRunCount = 1000,
-- experimentRunCount = 10,
experimentTitle = "Machine Tool with Breakdowns" }

jobsCompleted = T.ArrivalTimer $ resultByName "jobsCompleted"
jobsInterrupted = resultByName "jobsInterrupted"
inputQueue = T.Queue $ resultByName "inputQueue"
machineProcessing = T.Server $ resultByName "machineProcessing"

jobsCompletedCount =
T.samplingStatsCount $
T.arrivalProcessingTime jobsCompleted

74

processingTime :: ResultTransform
processingTime =
T.tr $ T.arrivalProcessingTime jobsCompleted

waitTime :: ResultTransform
waitTime =
T.tr $ T.queueWaitTime inputQueue

queueCount :: ResultTransform
queueCount =
T.queueCount inputQueue

queueCountStats :: ResultTransform
queueCountStats =
T.tr $ T.queueCountStats inputQueue

processingFactor :: ResultTransform
processingFactor =
T.serverProcessingFactor machineProcessing

generators :: ChartRendering r => [WebPageGenerator r]
generators =
[outputView defaultExperimentSpecsView,
outputView defaultInfoView,
outputView $ defaultFinalStatsView {
finalStatsTitle = "Machine Tool With Breakdowns",
finalStatsSeries = jobsCompletedCount <> jobsInterrupted },

outputView $ defaultDeviationChartView {
deviationChartTitle = "The Wait Time (chart)",
deviationChartWidth = 1000,
deviationChartRightYSeries = waitTime },

outputView $ defaultFinalStatsView {
finalStatsTitle = "The Wait Time (statistics)",
finalStatsSeries = waitTime },

outputView $ defaultDeviationChartView {
deviationChartTitle = "The Queue Size (chart)",
deviationChartWidth = 1000,
deviationChartRightYSeries = queueCount <> queueCountStats },

outputView $ defaultFinalStatsView {
finalStatsTitle = "The Queue Size (statistics)",
finalStatsSeries = queueCountStats },

outputView $ defaultDeviationChartView {
deviationChartTitle = "The Processing Time (chart)",
deviationChartWidth = 1000,
deviationChartRightYSeries = processingTime },

outputView $ defaultFinalStatsView {
finalStatsTitle = "The Processing Time (statistics)",
finalStatsSeries = processingTime },

outputView $ defaultDeviationChartView {
deviationChartTitle = "The Machine Load (chart)",
deviationChartWidth = 1000,
deviationChartRightYSeries = processingFactor },

outputView $ defaultFinalHistogramView {
finalHistogramTitle = "The Machine Load (histogram)",
finalHistogramWidth = 1000,
finalHistogramSeries = processingFactor },

outputView $ defaultFinalStatsView {
finalStatsTitle = "The Machine Load (statistics)",
finalStatsSeries = processingFactor }]

75

6.8.3 Charting

As it became a tradition, here you can choose one of the charting back-ends.
The code is absolutely the same as it was in section 1.4.3.

6.8.4 Running Simulation Experiment

When using the Cairo-based charting backend, the simulation experiment with
1000 runs lasted for 12 seconds on my laptop. But when using the Diagrams-
based charting backend, the same simulation experiment lasted for 22 seconds.

On a histogram from figure 6.2, we can see the approximation of the machine
load processing factor distribution in the final time point.

Figure 6.2: The histogram of machine load processing factor in the final time
point.

76

Chapter 7

Agent-based Modeling

Aivika provides a basic support of the agent-based modeling paradigm[16].
An idea is to try to describe a model as a cooperative behavior of a relatively

large number of small agents. The agents can have states and these states can
be either active or inactive. We can assign to the state a handler that is actuated
under the condition that the state remains active.

7.1 Agents and Their States

We create new agents and their states within the Simulation computation.

data Agent
data AgentState

newAgent :: Simulation Agent
newState :: Agent -> Simulation AgentState
newSubstate :: AgentState -> Simulation AgentState

Only one of the states can be selected for each agent at the modeling time.
All ancestor states remain active if they were active before, or they become
active if they were deactivated. Other states are deactivated if they were active
on the contrary.

selectedState :: Agent -> Event (Maybe AgentState)
selectState :: AgentState -> Event ()

The first function returns the currently selected state or Nothing if the agent
was not yet initiated. Other function allows selecting a new state. The both
functions return actions within the Event computation, which means that the
state selection is always synchronized with the event queue.

We can assign the Event handlers to be performed when activating or de-
activating the specified state during such a selection.

setStateActivation :: AgentState -> Event () -> Event ()
setStateDeactivation :: AgentState -> Event () -> Event ()

If the specified third state remains active when selecting another state, but
the path from the old selected state to a new state goes through the third
state, then we can call the third state transitive and can assign an action to be
performed when such a transition occurs.

77

setStateTransition :: AgentState -> Event (Maybe AgentState) -> Event ()

Here the new selected state is sent to the corresponding Event computation.
What differs the agents from other simulation concepts is an ability to assign

so called timeout and timer handlers. The timeout handler is an Event computa-
tion which is actuated in the specified time interval if the sate remains active.
The timer handler is similar, but only the handler is repeated while the state
still remains active. Therefore, the timeout handler accepts the time as a pure
value, while the timer handler recalculates the time interval within the Event
computation after each successful actualization.

addTimeout :: AgentState -> Double -> Event () -> Event ()
addTimer :: AgentState -> Event Double -> Event () -> Event ()

The implementation is quite simple. By the specified state handler, we create
a wrapper handler which we pass in to the enqueueEvent function with the
desired time of actuating. If the state becomes deactivated before the planned
time comes then we invalidate the wrapper. After the wrapper is actuated by
the event queue at the planned time, we do not call the corresponding state
handler if the wrapper was invalidated earlier.

We use the Event computation to synchronize the agents with the event
queue. It literally means that the agent-based modeling can be integrated with
other simulation methods within one combined model.

7.2 Example: Agent-based Modeling

To illustrate the use of agents, let us take the Bass Diffusion model from the
AnyLogic documentation [16].

The model describes a product diffusion process. Potential adopters
of a product are influenced into buying the product by advertising
and by word of mouth from adopters, those who have already pur-
chased the new product. Adoption of a new product driven by
word of mouth is likewise an epidemic. Potential adopters come
into contact with adopters through social interactions. A fraction of
these contacts results in the purchase of the new product. The adver-
tising causes a constant fraction of the potential adopter population
to adopt each time period.

7.2.1 Returning Results From Model

Below is provided a simulation model. The agents are quite simple. They can
be only in one of two possible states.

module Model (model) where

import Data.Array

import Control.Monad
import Control.Monad.Trans

import Simulation.Aivika

78

n = 100 -- the number of agents

advertisingEffectiveness = 0.011
contactRate = 100.0
adoptionFraction = 0.015

data Person = Person { personAgent :: Agent,
personPotentialAdopter :: AgentState,
personAdopter :: AgentState }

createPerson :: Simulation Person
createPerson =
do agent <- newAgent
potentialAdopter <- newState agent
adopter <- newState agent
return Person { personAgent = agent,

personPotentialAdopter = potentialAdopter,
personAdopter = adopter }

createPersons :: Simulation (Array Int Person)
createPersons =
do list <- forM [1 .. n] $ \i ->

do p <- createPerson
return (i, p)

return $ array (1, n) list

definePerson :: Person -> Array Int Person -> Ref Int -> Ref Int -> Event ()
definePerson p ps potentialAdopters adopters =
do setStateActivation (personPotentialAdopter p) $

do modifyRef potentialAdopters $ \a -> a + 1
-- add a timeout
t <- liftParameter $

randomExponential (1 / advertisingEffectiveness)
let st = personPotentialAdopter p

st’ = personAdopter p
addTimeout st t $ selectState st’

setStateActivation (personAdopter p) $
do modifyRef adopters $ \a -> a + 1
-- add a timer that works while the state is active
let t = liftParameter $

randomExponential (1 / contactRate) -- many times!
addTimer (personAdopter p) t $
do i <- liftParameter $

randomUniformInt 1 n
let p’ = ps ! i
st <- selectedState (personAgent p’)
when (st == Just (personPotentialAdopter p’)) $
do b <- liftParameter $

randomTrue adoptionFraction
when b $ selectState (personAdopter p’)

setStateDeactivation (personPotentialAdopter p) $
modifyRef potentialAdopters $ \a -> a - 1

setStateDeactivation (personAdopter p) $
modifyRef adopters $ \a -> a - 1

definePersons :: Array Int Person -> Ref Int -> Ref Int -> Event ()
definePersons ps potentialAdopters adopters =
forM_ (elems ps) $ \p ->
definePerson p ps potentialAdopters adopters

activatePerson :: Person -> Event ()

79

activatePerson p = selectState (personPotentialAdopter p)

activatePersons :: Array Int Person -> Event ()
activatePersons ps =
forM_ (elems ps) $ \p -> activatePerson p

model :: Simulation Results
model =
do potentialAdopters <- newRef 0
adopters <- newRef 0
ps <- createPersons
runEventInStartTime $
do definePersons ps potentialAdopters adopters
activatePersons ps

return $
results
[resultSource
"potentialAdopters" "potential adopters of the product" potentialAdopters,
resultSource
"adopters" "adopters of the product" adopters]

7.2.2 Experiment Definition

Unlike the previous examples, now our simulation experiment is very simple.
We want to see the deviation chart for the variable number of adopters and
potential adopters.

module Experiment (experiment, generators) where

import Data.Monoid

import Simulation.Aivika
import Simulation.Aivika.Experiment
import Simulation.Aivika.Experiment.Chart

specs = Specs { spcStartTime = 0.0,
spcStopTime = 8.0,
spcDT = 0.1,
spcMethod = RungeKutta4,
spcGeneratorType = SimpleGenerator }

experiment :: Experiment
experiment =
defaultExperiment {
experimentSpecs = specs,
experimentRunCount = 1000,
experimentDescription =
"This is the famous Bass Diffusion " ++
"model solved with help of the agent-based modelling." }

potentialAdopters = resultByName "potentialAdopters"
adopters = resultByName "adopters"

generators :: ChartRendering r => [WebPageGenerator r]
generators =
[outputView defaultExperimentSpecsView,
outputView defaultInfoView,
outputView $ defaultDeviationChartView {
deviationChartLeftYSeries =
potentialAdopters <> adopters }]

80

7.2.3 Charting

As before, here you can choose one of the charting back-ends. The code is
absolutely the same as it was in section 1.4.3.

7.2.4 Running Simulation Experiment

When using the Diagrams-based charting backed, the entire simulation exper-
iment with 1000 runs lasted for 20 seconds on my laptop. When using the
Cairo-based charting backend, it took 12 seconds only.

You can see the corresponding chart on figure 7.1.

Figure 7.1: The deviation chart for variable number of adopters and potential
adopters.

81

Chapter 8

Automata

In Aivika there are two auxiliary computations that are inspired by an idea of
automata described in the literature[10, 5], which is consonant to the approach
applied in Yampa[9].

8.1 Circuit

Here is the first computation that is called Circuit.

newtype Circuit a b = Circuit { runCircuit :: a -> Event (b, Circuit a b) }

This is an automaton that takes an input and returns the output and next
state within the Event computation synchronized with the event queue.

The Circuit type is obviously an ArrowLoop. Therefore, we can create
recursive links and introduce delays by one step using the specified initial
value.

delayCircuit :: a -> Circuit a a

Also we can integrate numerically the differential equations within the
circuit computation creating loopbacks using the proc-notation if required.

integCircuit :: Double -> Circuit Double Double

By the specified initial value we return a circuit that treats the input as
derivative and returns the integral value as output.

In a similar way we can solve numerically a system of difference equations,
where the next function takes the initial value too but returns an automaton
that generates the sum as output by the input specifying the difference.

sumCircuit :: Num a => a -> Circuit a a

So, the system of ODEs from section 1.3 can be rewritten as follows.

circuit :: Circuit () [Double]
circuit =
let ka = 1

kb = 1
in proc () -> do

82

rec a <- integCircuit 100 -< - ka * a
b <- integCircuit 0 -< ka * a - kb * b
c <- integCircuit 0 -< kb * b

returnA -< [a, b, c]

To get the final results of integration, now we have to transform somehow
the Circuit arrow computation. Therefore we need some conversion.

An arbitrary circuit can be treated as the signal transform or processor.

circuitSignaling :: Circuit a b -> Signal a -> Signal b
circuitProcessor :: Circuit a b -> Processor a b

Furthermore, the circuit can be approximated in the integration time points
and interpolated in other time points:

circuitTransform :: Circuit a b -> Transform a b

Here the Transform type is similar to the ending part of the integ function.
It can be realized as an analogous circuit as opposite to digital one represented
by the Circuit computation.

newtype Transform a b =
Transform { runTransform :: Dynamics a -> Simulation (Dynamics b) }

Also it gives us another interpretation for the Dynamics computation. The
latter can be considered as a single entity defined in all time points simultane-
ously, which seems to be natural as we can approximate the integral in such
a way. Consider comparing this computation with the Event computation,
where we strongly emphasize on the fact that the Event computation is bound
up with the current simulation time point. Speaking of the Dynamics compu-
tation, we do not do any assumptions regarding the simulation time but the
boundary condition.

Returning to our ODE, we can run the model by approximating the circuit
in the integration time points for simplicity, but not for efficiency, though.

model :: Simulation [Double]
model =
do results <-

runTransform (circuitTransform circuit) $
return ()

runDynamicsInStopTime results

This model will return almost the same results1 but it is much slower than
the model that used the integ function with the Dynamics computation.

The integCircuit function itself has a very small memory footprint, or
more precisely, it creates a lot of small short-term functions but recycles them
immediately. But this footprint is mostly neglected by the circuitTransform
function, which is memory consuming.

On the contrary, the integ function may allocate a potentially huge array
once, but then it consumes almost no memory when integrating numerically.

Comparing the circuit with other computations, the former always returns
its output at the current modeling time without delay, but the circuit also saves

1Even if we will use Euler’s method which must be equivalent, there is also an inevitable
inaccuracy of calculations.

83

its state and we can request for the next output by next input at any desired
time later. It is essential that the circuit allows specifying recursive links, which
can be useful to describe a simple digital circuit, for example.

An approximation of the circuit in the integration time points allows using
it in the differential equations. A synchronization with the event queue is
provided automatically.

8.2 Network

There is a version of the Circuit computation, but only where the Event
computation is replaced by the Process computation.

newtype Net a b = Net { runNet :: a -> Process (b, Net a b) }

TheNet type has a more efficient implementation of theArrow type class than
Processor has. A computation received with help of the proc-notation must
be significantly more light-weight. It is similar to the Circuit computation,
but only Net is not ArrowLoop, because the Process monad, being based on
continuations, is not MonadFix.

Moreover, the Net computation can be easily converted to a processor and it
can be done very efficiently, which shows the main use case for this type: writing
some parts of the model within Net computation using the proc-notation with
the further conversion.

netProcessor :: Net a b -> Processor a b
netProcessor = Processor . loop
where loop x as =

Cons $
do (a, as’) <- runStream as
(b, x’) <- runNet x a
return (b, loop x’ as’)

The problem is that the Net type has no clear multiplexing and demulti-
plexing facilities for parallelizing the processing. Also its opposite conversion
is quite costly and there is actually no guarantee that the specified processor
will produce exactly one output for each input value.

processorNet :: Processor a b -> Net a b

Nevertheless, the both computations can be useful in their combination.

84

Chapter 9

System Dynamics

Earlier we introduced the integ function that allows approximating integrals.
There is the similar function diffsum that allows defining difference equations.
The ordinary differential and difference equations are a foundation of System
Dynamics. In this chapter we will consider some examples related to this field
of simulation.

9.1 Example: Parametric Model

Now we will focus on a practical question: how to prepare a parametric model
for the Monte-Carlo simulation? For example, it can be useful for providing
the sensitivity analysis.

Let us take the financial model[18] described in Vensim 5 Modeling Guide,
Chapter Financial Modeling and Risk. Probably, the best way to describe the
model is just to show its equations.

The equations use the npv function from System Dynamics. It returns the
Net Present Value (NPV) of the stream computed using the specified discount
rate, the initial value and some factor (usually 1).

npv :: Dynamics Double -- ^ the stream
-> Dynamics Double -- ^ the discount rate
-> Dynamics Double -- ^ the initial value
-> Dynamics Double -- ^ factor
-> Simulation (Dynamics Double) -- ^ the Net Present Value (NPV)

npv stream rate init factor =
mdo let dt’ = liftParameter dt

df <- integ (- df * rate) 1
accum <- integ (stream * df) init
return $ (accum + dt’ * stream * df) * factor

Also we need a helper conditional combinator that allows avoiding the
do-notation in some cases.

-- | Implement the if-then-else operator.
ifDynamics :: Dynamics Bool -> Dynamics a -> Dynamics a -> Dynamics a
ifDynamics cond x y =
do a <- cond
if a then x else y

85

9.1.1 Returning Results From Model

After we finished the necessary preliminaries, now we can show how the
parametric model can be prepared for the Monte-Carlo simulation.

We represent each external parameter as a Parameter computation. To
be reproducible within every simulation run, the random parameter must be
memoized with help of the memoParameter function.

Also this model returns the Results within the Simulation computation.
Such results can be processed then or just printed in Terminal.

{-# LANGUAGE RecursiveDo #-}

module Model
(-- * Simulation Model
model,
-- * Variable Names
netIncomeName,
netCashFlowName,
npvIncomeName,
npvCashFlowName,
-- * External Parameters
Parameters(..),
defaultParams,
randomParams) where

import Control.Monad

import Simulation.Aivika
import Simulation.Aivika.SystemDynamics
import Simulation.Aivika.Experiment
import Simulation.Aivika.Experiment.Chart

-- | The model parameters.
data Parameters =
Parameters { paramsTaxDepreciationTime :: Parameter Double,

paramsTaxRate :: Parameter Double,
paramsAveragePayableDelay :: Parameter Double,
paramsBillingProcessingTime :: Parameter Double,
paramsBuildingTime :: Parameter Double,
paramsDebtFinancingFraction :: Parameter Double,
paramsDebtRetirementTime :: Parameter Double,
paramsDiscountRate :: Parameter Double,
paramsFractionalLossRate :: Parameter Double,
paramsInterestRate :: Parameter Double,
paramsPrice :: Parameter Double,
paramsProductionCapacity :: Parameter Double,
paramsRequiredInvestment :: Parameter Double,
paramsVariableProductionCost :: Parameter Double }

-- | The default model parameters.
defaultParams :: Parameters
defaultParams =
Parameters { paramsTaxDepreciationTime = 10,

paramsTaxRate = 0.4,
paramsAveragePayableDelay = 0.09,
paramsBillingProcessingTime = 0.04,
paramsBuildingTime = 1,
paramsDebtFinancingFraction = 0.6,
paramsDebtRetirementTime = 3,
paramsDiscountRate = 0.12,
paramsFractionalLossRate = 0.06,

86

paramsInterestRate = 0.12,
paramsPrice = 1,
paramsProductionCapacity = 2400,
paramsRequiredInvestment = 2000,
paramsVariableProductionCost = 0.6 }

-- | Random parameters for the Monte-Carlo simulation.
randomParams :: IO Parameters
randomParams =
do averagePayableDelay <- memoParameter $ randomUniform 0.07 0.11
billingProcessingTime <- memoParameter $ randomUniform 0.03 0.05
buildingTime <- memoParameter $ randomUniform 0.8 1.2
fractionalLossRate <- memoParameter $ randomUniform 0.05 0.08
interestRate <- memoParameter $ randomUniform 0.09 0.15
price <- memoParameter $ randomUniform 0.9 1.2
productionCapacity <- memoParameter $ randomUniform 2200 2600
requiredInvestment <- memoParameter $ randomUniform 1800 2200
variableProductionCost <- memoParameter $ randomUniform 0.5 0.7
return defaultParams { paramsAveragePayableDelay = averagePayableDelay,

paramsBillingProcessingTime = billingProcessingTime,
paramsBuildingTime = buildingTime,
paramsFractionalLossRate = fractionalLossRate,
paramsInterestRate = interestRate,
paramsPrice = price,
paramsProductionCapacity = productionCapacity,
paramsRequiredInvestment = requiredInvestment,
paramsVariableProductionCost =
variableProductionCost }

-- | This is the model itself that returns experimental data.
model :: Parameters -> Simulation Results
model params =
mdo let getParameter f = liftParameter $ f params

-- the equations below are given in an arbitrary order!

bookValue <- integ (newInvestment - taxDepreciation) 0
let taxDepreciation = bookValue / taxDepreciationTime

taxableIncome = grossIncome - directCosts - losses
- interestPayments - taxDepreciation

production = availableCapacity
availableCapacity = ifDynamics (time .>=. buildingTime)

productionCapacity 0
taxDepreciationTime = getParameter paramsTaxDepreciationTime
taxRate = getParameter paramsTaxRate

accountsReceivable <- integ (billings - cashReceipts - losses)
(billings / (1 / averagePayableDelay

+ fractionalLossRate))
let averagePayableDelay = getParameter paramsAveragePayableDelay
awaitingBilling <- integ (price * production - billings)

(price * production * billingProcessingTime)
let billingProcessingTime = getParameter paramsBillingProcessingTime

billings = awaitingBilling / billingProcessingTime
borrowing = newInvestment * debtFinancingFraction
buildingTime = getParameter paramsBuildingTime
cashReceipts = accountsReceivable / averagePayableDelay

debt <- integ (borrowing - principalRepayment) 0
let debtFinancingFraction = getParameter paramsDebtFinancingFraction

debtRetirementTime = getParameter paramsDebtRetirementTime
directCosts = production * variableProductionCost
discountRate = getParameter paramsDiscountRate
fractionalLossRate = getParameter paramsFractionalLossRate

87

grossIncome = billings
interestPayments = debt * interestRate
interestRate = getParameter paramsInterestRate
losses = accountsReceivable * fractionalLossRate
netCashFlow = cashReceipts + borrowing - newInvestment

- directCosts - interestPayments
- principalRepayment - taxes

netIncome = taxableIncome - taxes
newInvestment = ifDynamics (time .>=. buildingTime)

0 (requiredInvestment / buildingTime)
npvCashFlow <- npv netCashFlow discountRate 0 1
npvIncome <- npv netIncome discountRate 0 1
let price = getParameter paramsPrice

principalRepayment = debt / debtRetirementTime
productionCapacity = getParameter paramsProductionCapacity
requiredInvestment = getParameter paramsRequiredInvestment
taxes = taxableIncome * taxRate
variableProductionCost = getParameter paramsVariableProductionCost

return $
results
[resultSource netIncomeName "Net income" netIncome,
resultSource netCashFlowName "Net cash flow" netCashFlow,
resultSource npvIncomeName "NPV income" npvIncome,
resultSource npvCashFlowName "NPV cash flow" npvCashFlow]

-- the names of the variables we are interested in
netIncomeName = "netIncome"
netCashFlowName = "netCashFlow"
npvIncomeName = "npvIncome"
npvCashFlowName = "npvCashFlow"

Now we can apply the Monte-Carlo simulation to this parametric model,
for example, to define how sensitive are some variables to the random external
parameters.

The point is that not only ODEs can be parametric. There is not any differ-
ence, whether we integrate numerically, or run the discrete event simulation, or
simulate the agents. The external parameters are just Parameter computations
that can be used within other simulation computations.

9.1.2 Experiment Definition

Unlike other examples, here we actually define two experiments: one for the
Monte-Carlo simulation and another more simple with single run.

module Experiment (monteCarloExperiment, singleExperiment,
monteCarloGenerators, singleGenerators) where

import Control.Monad

import Data.Monoid

import Simulation.Aivika
import Simulation.Aivika.Experiment
import Simulation.Aivika.Experiment.Chart

import Model

-- the simulation specs

88

specs = Specs 0 5 0.015625 RungeKutta4 SimpleGenerator

-- | The experiment for the Monte-Carlo simulation.
monteCarloExperiment :: Experiment
monteCarloExperiment =
defaultExperiment {
experimentSpecs = specs,
experimentRunCount = 1000,
experimentTitle = "Financial Model (the Monte-Carlo simulation)",
experimentDescription =
"Financial Model (the Monte-Carlo simulation) as described in " ++
"Vensim 5 Modeling Guide, Chapter Financial Modeling and Risk." }

netIncome = resultByName netIncomeName
npvIncome = resultByName npvIncomeName

netCashFlow = resultByName netCashFlowName
npvCashFlow = resultByName npvCashFlowName

monteCarloGenerators :: ChartRendering r => [WebPageGenerator r]
monteCarloGenerators =
[outputView defaultExperimentSpecsView,
outputView defaultInfoView,
outputView $ defaultDeviationChartView {
deviationChartTitle = "Chart 1",
deviationChartPlotTitle =
"The deviation chart for Net Income and Cash Flow",

deviationChartLeftYSeries = netIncome <> netCashFlow },
outputView $ defaultDeviationChartView {
deviationChartTitle = "Chart 2",
deviationChartPlotTitle =
"The deviation chart for Net Present Value of Income and Cash Flow",

deviationChartLeftYSeries = npvIncome <> npvCashFlow },
outputView $ defaultFinalHistogramView {
finalHistogramTitle = "Histogram 1",
finalHistogramPlotTitle ="Histogram for Net Income and Cash Flow",
finalHistogramSeries = netIncome <> netCashFlow },

outputView $ defaultFinalHistogramView {
finalHistogramTitle = "Histogram 2",
finalHistogramPlotTitle =
"Histogram for Net Present Value of Income and Cash Flow",

finalHistogramSeries = npvIncome <> npvCashFlow },
outputView $ defaultFinalStatsView {
finalStatsTitle = "Summary 1",
finalStatsSeries = netIncome <> netCashFlow },

outputView $ defaultFinalStatsView {
finalStatsTitle = "Summary 2",
finalStatsSeries = npvIncome <> npvCashFlow }]

-- | The experiment with single simulation run.
singleExperiment :: Experiment
singleExperiment =
defaultExperiment {
experimentSpecs = specs,
experimentTitle = "Financial Model",
experimentDescription =
"Financial Model as described in " ++
"Vensim 5 Modeling Guide, Chapter Financial Modeling and Risk." }

singleGenerators :: ChartRendering r => [WebPageGenerator r]
singleGenerators =
[outputView defaultExperimentSpecsView,

89

outputView defaultInfoView,
outputView $ defaultTimeSeriesView {
timeSeriesTitle = "Time Series 1",
timeSeriesPlotTitle = "Time series of Net Income and Cash Flow",
timeSeriesLeftYSeries = netIncome <> netCashFlow },

outputView $ defaultTimeSeriesView {
timeSeriesTitle = "Time Series 2",
timeSeriesPlotTitle =
"Time series of Net Present Value for Income and Cash Flow",

timeSeriesLeftYSeries = npvIncome <> npvCashFlow },
outputView $ defaultTableView {
tableTitle = "Table",
tableSeries = netIncome <> netCashFlow <> npvIncome <> npvCashFlow }]

9.1.3 Charting

Similarly, we need to have different charting applications to run both our sim-
ulation experiments one by one.

Cairo-based Charting Back-end

import Simulation.Aivika.Experiment
import Simulation.Aivika.Experiment.Chart
import Simulation.Aivika.Experiment.Chart.Backend.Cairo

import Graphics.Rendering.Chart.Backend.Cairo

import Model
import Experiment

main = do

-- run the ordinary simulation
putStrLn "*** The simulation with default parameters..."
runExperiment
singleExperiment singleGenerators
(WebPageRenderer (CairoRenderer PNG) experimentFilePath) (model defaultParams)

putStrLn ""

-- run the Monte-Carlo simulation
putStrLn "*** The Monte-Carlo simulation..."
randomParams >>= runExperimentParallel
monteCarloExperiment monteCarloGenerators
(WebPageRenderer (CairoRenderer PNG) experimentFilePath) . model

Diagrams-based Charting Back-end

import Simulation.Aivika.Experiment
import Simulation.Aivika.Experiment.Chart
import Simulation.Aivika.Experiment.Chart.Backend.Diagrams

import Graphics.Rendering.Chart.Backend.Diagrams

import Model
import Experiment

main = do
fonts <- loadCommonFonts
let renderer = DiagramsRenderer SVG (return fonts)

90

-- run the ordinary simulation
putStrLn "*** The simulation with default parameters..."
runExperiment
singleExperiment singleGenerators
(WebPageRenderer renderer experimentFilePath) (model defaultParams)

putStrLn ""

-- run the Monte-Carlo simulation
putStrLn "*** The Monte-Carlo simulation..."
randomParams >>= runExperimentParallel
monteCarloExperiment monteCarloGenerators
(WebPageRenderer renderer experimentFilePath) . model

9.1.4 Running Simulation Experiments

When using the Diagrams-based charting backend, the both simulation ex-
periments one by one, where the former contained a single run but the latter
consisted of 1000 runs, lasted for 34 seconds on my laptop. When using the
Cairo-based charting backend, the both experiments lasted for 23 seconds.

You can see one of the charts on figure 9.1.

Figure 9.1: The deviation chart for Net income and Cache Flow.

9.2 Example: Using Arrays

Some vendors offer different versions of their simulation software tools, where
one of the main advantages of using a commercial version is an ability to use

91

arrays.
There is no need in special support of arrays in Aivika. They can be naturally

used with the simulation computations.

9.2.1 Returning Results from Model

Let us take model Linear Array from Berkeley Madonna[7] to demonstrate the
main idea.

{-# LANGUAGE RecursiveDo #-}

module Model (model) where

import Data.Array
import Control.Monad
import Control.Monad.Trans

import qualified Data.Vector as V

import Simulation.Aivika
import Simulation.Aivika.SystemDynamics
import Simulation.Aivika.Experiment

-- | This is an analog of ’V.generateM’ included in the Haskell platform.
generateArray :: (Ix i, Monad m) => (i, i) -> (i -> m a) -> m (Array i a)
generateArray bnds generator =
do ps <- forM (range bnds) $ \i ->

do x <- generator i
return (i, x)

return $ array bnds ps

model :: Int -> Simulation Results
model n =
mdo m <- generateArray (1, n) $ \i ->

integ (q + k * (c!(i - 1) - c!i) + k * (c!(i + 1) - c!i)) 0
let c =

array (0, n + 1) [(i, if (i == 0) || (i == n + 1)
then 0
else (m!i / v)) | i <- [0 .. n + 1]]

q = 1
k = 2
v = 0.75

return $ results
[resultSource "t" "time" time,
resultSource "m" "M" m,
resultSource "c" "C" c]

The code provided above uses the standard Array module. If we used the
Vectormodule, then we would need no function generateArray at all.

This model creates an array of integrals. Similarly, we could use arrays in
the discrete event simulation or agent-based model.

9.2.2 Experiment Definition

In the experiment we want to look at the arrays from different perspectives.

module Experiment (experiment, generators) where

import Data.Monoid

92

import Simulation.Aivika
import Simulation.Aivika.Experiment
import Simulation.Aivika.Experiment.Chart

specs = Specs { spcStartTime = 0,
spcStopTime = 500,
spcDT = 0.1,
spcMethod = RungeKutta4,
spcGeneratorType = SimpleGenerator }

experiment :: Experiment
experiment =
defaultExperiment {
experimentSpecs = specs,
experimentRunCount = 1,
experimentTitle = "Linear Array",
experimentDescription = "Model Linear Array as described in " ++

"the examples included in Berkeley-Madonna." }

t = resultByName "t"
m = resultByName "m"
c = resultByName "c"

generators :: ChartRendering r => [WebPageGenerator r]
generators =
[outputView defaultExperimentSpecsView,
outputView $ defaultTableView {
tableSeries = t <> m <> c },

outputView $ defaultTimeSeriesView {
timeSeriesLeftYSeries = m,
timeSeriesWidth = 800,
timeSeriesHeight = 800 },

outputView $ defaultTimeSeriesView {
timeSeriesRightYSeries = c,
timeSeriesWidth = 800,
timeSeriesHeight = 800 },

outputView $ defaultTimeSeriesView {
timeSeriesLeftYSeries = m,
timeSeriesRightYSeries = c,
timeSeriesWidth = 800,
timeSeriesHeight = 800 },

outputView $ defaultXYChartView {
xyChartXSeries = t,
xyChartLeftYSeries = m,
xyChartWidth = 800,
xyChartHeight = 800 },

outputView $ defaultXYChartView {
xyChartXSeries = t,
xyChartRightYSeries = c,
xyChartWidth = 800,
xyChartHeight = 800 },

outputView $ defaultXYChartView {
xyChartXSeries = t,
xyChartLeftYSeries = m,
xyChartRightYSeries = c,
xyChartWidth = 800,
xyChartHeight = 800 }]

93

9.2.3 Charting

Since our model depends on the numerical parameter, we define other charting
applications, although they are very similar to those ones that we used before.

Cairo-based Charting Back-end

import Simulation.Aivika.Experiment
import Simulation.Aivika.Experiment.Chart
import Simulation.Aivika.Experiment.Chart.Backend.Cairo

import Graphics.Rendering.Chart.Backend.Cairo

import Model
import Experiment

main =
runExperiment experiment generators
(WebPageRenderer (CairoRenderer PNG) experimentFilePath)
(model 51)

Diagrams-based Charting Back-end

import Simulation.Aivika.Experiment
import Simulation.Aivika.Experiment.Chart
import Simulation.Aivika.Experiment.Chart.Backend.Diagrams

import Graphics.Rendering.Chart.Backend.Diagrams

import Model
import Experiment

main =
do fonts <- loadCommonFonts
let renderer = DiagramsRenderer SVG (return fonts)
runExperiment experiment generators
(WebPageRenderer renderer experimentFilePath)
(model 51)

Also there is no need to run the simulation experiment in parallel as there
is only 1 simulation run.

9.2.4 Running Simulation Experiment

When using the Diagrams-based charting backend, the single simulation run
lasted for 39 seconds, while it lasted only for 7 seconds, when using the Cairo-
based charting backend. Such a large difference is related to the fact the SVG
vector graphics files contain too much information. Please be careful about this
pitfall!

You can see one of the corresponding charts on figure 9.2.

94

Figure 9.2: The time series for arrays.

95

Chapter 10

GPSS-like DSL

Aivika supports an internal domain-specific language (DSL), which is similar
to the popular GPSS modeling language[14], but this is the same Haskell.

Note that the GPSS-like DSL is not equivalent to the original GPSS language,
but it may return very similar results in some cases, while it can also return
quite different results in other cases.

The aivika-gpss package implements the most of GPSS simulation blocks,
but the main difference is as follows.

Like GPSS, the package tries to treat the transact priorities properly within
each block. Here it works in a very similar way even for such non-trivial
blocks as PREEMPT, GATHER and ASSEMBLE. But unlike GPSS, the blocks behave
independently from each other, where the transact priorities are not used when
deciding which of the blocks will be activated next. The order of activating the
blocks is unpredictable.

10.1 Blocks and Transacts

The blocks and generators are basic computations of the GPSS-like DSL. They
have the following definition1.

data Block a b = Block { blockProcess :: a -> Process b }

newtype GeneratorBlock a =
GeneratorBlock { runGeneratorBlock :: Block a () -> Process () }

This is the next elaboration of an idea of using the Process computation as
a composing and building unit. As you might remember, Process denotes the
discontinuous process.

Here, the Block computation corresponds to the GPSS block that has input
of type a and output of type b. The GeneratorBlock computation corresponds
to the GENERATE construct from GPSS that, being applied to some terminating
Block, returns an action that models the traversing of the generated items
through the corresponded block. The block is terminating if its output, i.e. the
second type parameter, is unit () like this: Block a ().

1A reader experienced in Haskell might say that the Block computation is actually a Kleisli
arrow, but without ArrowLoop, because Process is not MonadFix.

96

So, the TERMINATE construct from GPSS will correspond to the following
computation:

terminateBlock :: Block a ()

Since Block is a Category, we can connect blocks in the chain:

p1 :: Block a b
p2 :: Block b c

p3 :: Block a c
p3 = p1 >>> p2

◦
p1 // ◦

p2 // ◦

To create generators, we can use theStream computation, especially, random
streams.

streamGeneratorBlock :: Stream (Arrival a)
-> Int
-> GeneratorBlock (Transact a)

streamGeneratorBlock0 :: Stream (Arrival a)
-> GeneratorBlock (Transact a)

The first function accepts the input stream and an integer priority that will
be assigned to new transacts. The second function assigns the zero priority.
The both functions return a generator of transacts.

Each transact has an integer priority and bears some value.

data Transact a

transactPriority :: Transact a -> Int
transactValue :: Transact a -> a

It is very important to note that the Block computation can process the
transacts in parallel unlike the Stream computation.

The most of simulation GPSS blocks have direct or very similar analogs in
Aivika. In other cases, they can be manually represented as Block computa-
tions, for example, in case of the SELECT block that requires the information
about queues and other entities it connects to.

Table 10.1: The GPSS block correspondence.

GPSS Construct An analog in Aivika
GENERATE streamGeneratorBlock
TERMINATE terminateBlock
a chain of blocks a chain of computations
ADVANCE advanceBlock
ASSEMBLE assembleBlock
ASSIGN assignBlock
DEPART departBlock
ENTER enterBlock

97

GATHER gatherBlock
LEAVE leaveBlock
LINK linkBlock
LOOP loopBlock
MATCH matchBlock
PREEMPT preemptBlock
PRIORITY priorityBlock
QUEUE queueBlock
RELEASE releaseBlock
RETURN returnBlock
SEIZE seizeBlock
SPLIT splitBlock
TEST awaitingTestBlock / transferringTestBlock
UNLINK unlinkBlock

The point is that we can naturally combine other computations with Block
computations. For example, it literally means that we can use agents within
the GPSS simulation model and vice versa.

10.2 Example: Using GPSS

Below is considered a model[14] that demonstrates the use of the GPSS-like
DSL.

The professor consults students one by one in auditorium. The
consultation can be interrupted by telephone call. The time unit is
0.01 minutes. The students come in the FIFO order. The telephone
calls every 20 +/- 5 minutes. It lasts for a time interval distributed
exponentially with average value 2 minutes. The consultation time
with one student has exponential distribution with average value
10 minutes. When interrupting, the consultation time increases by
3 minutes to restore the context of the interrupted talk.

The GPSS model is as follows. For simplicity, we assume that there are 20
students awaiting the consultation.

GENERATE 2000,500,,,1
GATE NI PROF,Busy
PREEMPT PROF,PR,Add,5
ADVANCE (Exponential(1,0,200))
RETURN PROF

Busy TERMINATE

GENERATE ,,,20
QUEUE LINE
SEIZE PROF
DEPART LINE
ADVANCE (Exponential(1,0,1000))

LetGo RELEASE PROF
TERMINATE

98

Add ASSIGN 5+,300
ADVANCE P5
TRANSFER ,LetGo

GENERATE 20000
TERMINATE 1

START 1

Here we see the preemption block that models the telephone call. It essen-
tially complicates the model. Fortunately, there is a direct analog in Aivika.

10.2.1 Returning Results from Model

Our model is very similar, but only it is written in pure Haskell. Also we reset
the statistics at time 4000.

module Model (model) where

import Prelude hiding (id)

import Control.Category
import Control.Monad.Trans

import Data.Maybe

import Simulation.Aivika
import Simulation.Aivika.GPSS
import qualified Simulation.Aivika.GPSS.Queue as Q

model :: Simulation Results
model =
do line <- runEventInStartTime Q.newQueue
prof <- runEventInStartTime newFacility

let phoneCallStream = randomUniformStream (2000 - 500) (2000 + 500)
studentStream = takeStream 20 $ randomUniformStream 0 0

let phoneCalls = streamGeneratorBlock phoneCallStream 1
phoneCallChain =
Block (\a ->

do f <- liftEvent (facilityInterrupted prof)
if f
then blockProcess (transferBlock busy) a
else return a) >>>

preemptBlock prof
(PreemptBlockMode { preemptBlockPriorityMode = True,

preemptBlockTransfer = Just add,
-- preemptBlockTransfer = Nothing,
preemptBlockRemoveMode = False }) >>>

advanceBlock (randomExponentialProcess_ 200) >>>
returnBlock prof >>>
busy

busy = terminateBlock

students = streamGeneratorBlock studentStream 0
studentChain =
queueBlock line 1 >>>
seizeBlock prof >>>
departBlock line 1 >>>
advanceBlock (randomExponentialProcess_ 1000) >>>

99

letGo
letGo =
releaseBlock prof >>>
terminateBlock

add dt0 =
let dt = maybe 0 id dt0
in advanceBlock (holdProcess (dt + 300)) >>>
transferBlock letGo

runProcessInStartTime $
runGeneratorBlock phoneCalls phoneCallChain

runProcessInStartTime $
runGeneratorBlock students studentChain

runEventInStartTime $
enqueueEvent 4000 $
do Q.resetQueue line
resetFacility prof

return $
results
[resultSource "line" "Line" line,
resultSource "prof" "Prof" prof]

10.2.2 Experiment Definition

In the experiment we want to see some statistics, for example, how the queue
size will decrease. The corresponding series is called lineContent.

{-# LANGUAGE FlexibleContexts #-}

module Experiment (experiment, generators) where

import Data.Monoid

import Control.Arrow

import Simulation.Aivika
import Simulation.Aivika.Experiment
import Simulation.Aivika.Experiment.Chart

import qualified Simulation.Aivika.Results.Transform as T
import qualified Simulation.Aivika.GPSS.Results.Transform as GpssT

-- | The simulation specs.
specs = Specs { spcStartTime = 0.0,

spcStopTime = 20000.0,
spcDT = 1.0,
spcMethod = RungeKutta4,
spcGeneratorType = SimpleGenerator }

-- | The experiment.
experiment :: Experiment
experiment =
defaultExperiment {
experimentSpecs = specs,
experimentRunCount = 10000,
-- experimentRunCount = 100,
experimentTitle = "The GPSS module 7.31" }

100

line = GpssT.Queue $ resultByName "line"
lineContent = GpssT.queueContent line
lineContentStats = T.tr $ GpssT.queueContentStats line
lineWaitTime = T.tr $ GpssT.queueWaitTime line
lineNonZeroEntryWaitTime = T.tr $ GpssT.queueNonZeroEntryWaitTime line

prof = GpssT.Facility $ resultByName "prof"
profUtilCount = GpssT.facilityUtilisationCount prof
profUtilCountStats = T.tr $ GpssT.facilityUtilisationCountStats prof
profHoldingTime = T.tr $ GpssT.facilityHoldingTime prof

statsView title series =
defaultFinalStatsView {
finalStatsTitle = title,
finalStatsSeries = series

}

chartView title series =
defaultDeviationChartView {
deviationChartTitle = title,
deviationChartRightYSeries = series

}

histogramView title series =
defaultFinalHistogramView {
finalHistogramTitle = title,
finalHistogramSeries = series

}

generators :: ChartRendering r => [WebPageGenerator r]
generators =
[outputView defaultExperimentSpecsView,
outputView defaultInfoView,
outputView $ statsView "PROF Utilisation" profUtilCount,
outputView $ chartView "PROF Utilisation" profUtilCount,
outputView $ statsView "PROF Holding Time" profHoldingTime,
outputView $ chartView "PROF Holding Time" profHoldingTime,
outputView $ statsView "LINE Content" lineContent,
outputView $ chartView "LINE Content" lineContent,
outputView $ histogramView "LINE Content" lineContent,
outputView $ statsView "LINE Wait Time" $
lineWaitTime <>
lineNonZeroEntryWaitTime,

outputView $ chartView "LINE Wait Time" $
lineWaitTime <>
lineNonZeroEntryWaitTime]

10.2.3 Charting

To run the simulation, you can choose one of the charting back-ends. The code
is absolutely the same as it was in section 1.4.3.

10.2.4 Running Simulation Experiment

When using the Diagrams-based charting backed, the whole simulation ex-
periment with 10000 (ten thousands) runs lasted for 2 minutes 16 seconds on
my MacBook Pro. When using the Cairo-based charting backend, the same
simulation experiment lasted for 1 minute 56 seconds.

101

You can see the deviation chart for a number of awaiting students on figure
10.1.

Figure 10.1: The number of students awaiting the consultation.

102

Part II

Parallel and Distributed
Simulation

103

In this part the parallel and distributed simulation based on the optimistic
Time Warp method is considered. It can be useful if you are going to utilize the
modern multi-core processor computers or multi-computer clusters. It is even
possible to connect computers located remotely and separated by far distance
for creating a distributed simulation, for example, where the cluster nodes can
be located in different remote computer centres connected through the Internet.

For that, Aivika supports a mode that allows recovering the distributed
simulation after temporary connection errors that are inevitable in complex
environments, but it works within the specified time-out limits after exceeding
which the broken distributed simulation stops automatically. It allows creating
safe and robust computational services based on the Linux operating system
with the desired response characteristics.

Moreover, there are tasks that cannot be allocated in memory of single
computer. These tasks can be solved only by creating the distributed simulation
model.

104

Chapter 11

Generalizing Simulation

All simulation computations considered before can be generalized to be useful
in other types of simulation, in particular, in distributed simulation. This
approach is so general that it works perfectly for nested simulation too.

11.1 Two Versions of Simulation Library

Actually, there are two versions of the Aivika simulation library. There is a
basic version optimized for sequential simulation. This is the aivika package
in the distribution. There is also a generalized version, which can be adapted to
other types of simulation. This is already the aivika-transformers package.

The aivika package could be a particular case of aivika-transformers,
but it was stayed alone for different reasons. At first, aivika has a more simple
documentation, which is very important. Also it is faster a little bit, although
the difference in speed can decrease in the future. Also aivika covers the
most of use cases that the modeler can confront with in practice. So, it was
decided to keep the aivika package, although it could be fully replaced by
aivika-transformers.

Earlier in the book we used the aivika package, but the text below is mainly
related to the aivika-transformers package.

11.2 Replacing IO with Abstract Computation

If we will repeat the Event computation definition from the first part devoted to
sequential simulation, then we will see that it returns a value in the IOmonad.

newtype Event a = Event (Point -> IO a)

The generalized version contains another computation with the same name
Event but parameterized by some other computation that corresponds to a
variable type m.

newtype Event m a = Event (Point -> m a)

105

This generalized computation along with others are often either monad
transformers or very similar to them, because of which the corresponding
aivika-transformers package has such a name.

To distinguish different computations with the same names, the generalized
version resides in another module namespace:

module Simulation.Aivika.Trans

This is not very idiomatic approach for Haskell, but it works well as it
makes easy to convert the sequential models to distributed and nested ones,
which can be important, if we are going to develop a distributed model step by
step, starting from the sequential prototype model and then extending it to the
distributed one.

So, not only the computations retain their original names, but also the
corresponding functions have almost the same signatures, generalized only
and with constraints.

enqueueEvent :: EventQueueing m => Double -> Event m () -> Event m ()

The EventQueueing type class literally means that its instance implements
the event queue. There are also different Ref type classes, where their instances
implement a mutable reference with the corresponding guarantees. There is
a MonadException type class too, where its instance must implement the IO
exception handling.

These three constraints are essentially encompassed by the MonadDES type
class: (1) an ability to enqueue events, (2) an ability to create and mutate
references and (3) an ability to handle IO exceptions. Also (4) the instance must
be a monad.

class MonadDES m

Further, we will assume that our simulation computations such as Event,
Process and others are parameterized by some MonadDES computation.

There is also a similar MonadSD type class that allows integrating differential
equations, but it is rarely used.

class MonadSD m

It is important that the standard IO imperative monad is an instance of
the both type classes, which actually means that the aivika package could be
replaced by its generalized sibling aivika-transformers.

instance MonadDES IO
instance MonadSD IO

Only when using IO in the generalized simulation computations, we have
also to import a module that contains the corresponding instances:

import Simulation.Aivika.IO

There are other corresponding modules for distributed simulation compu-
tation and nested simulation computation.

106

11.3 Generalizing Sequential Model

Provided the sequential simulation model, we can generalize it to be suitable
for other types of simulation such as distributed simulation or nested one.

We usually have to import another Aivika library module namespace by
replacing Simulation.Aivika with Simulation.Aivika.Trans. Also we have
to add the parameter computation to simulation computations.

For example, we can introduce a type synonym like this:

type DES = IO

Then we can use type Event DES a instead of Event a in the model.
Let us take our sequential model from section 2.6. Its definition is repeated

below.

module Model(model) where

import Control.Monad.Trans

import Simulation.Aivika

meanUpTime = 1.0
meanRepairTime = 0.5

model :: Simulation Results
model =
do totalUpTime <- newRef 0.0

let machine :: Process ()
machine =
do upTime <-

randomExponentialProcess meanUpTime
liftEvent $
modifyRef totalUpTime (+ upTime)

repairTime <-
randomExponentialProcess meanRepairTime

machine

runProcessInStartTime machine
runProcessInStartTime machine

let upTimeProp =
do x <- readRef totalUpTime
y <- liftDynamics time
return $ x / (2 * y)

return $
results
[resultSource
"upTimeProp"
"The long-run proportion of up time (~ 0.66)"
upTimeProp]

Now by applying the procedure described in this section, we can generalize
this sequential simulation model.

module Model(model) where

import Control.Monad.Trans

107

import Simulation.Aivika.Trans
import Simulation.Aivika.IO

type DES = IO

meanUpTime = 1.0
meanRepairTime = 0.5

model :: Simulation DES (Results DES)
model =
do totalUpTime <- newRef 0.0

let machine :: Process DES ()
machine =
do upTime <-

randomExponentialProcess meanUpTime
liftEvent $
modifyRef totalUpTime (+ upTime)

repairTime <-
randomExponentialProcess meanRepairTime

machine

runProcessInStartTime machine
runProcessInStartTime machine

let upTimeProp =
do x <- readRef totalUpTime
y <- liftDynamics time
return $ x / (2 * y)

return $
results
[resultSource
"upTimeProp"
"The long-run proportion of up time (~ 0.66)"
upTimeProp]

The point is that we can parameterize not only by the IO computation.
Similarly, we could convert the sequential model to an equivalent model by
using the distributed simulation computation, or nested simulation computa-
tion. It is important if we want to build a complex model from the sequential
model prototype. We could test and validate the prototype and only then begin
transforming it to the distributed model, for example.

11.4 Writing Generalized Code

To write the code, it is not necessary to instantiate always the generalized
computations by some parameter computation such as IO. So, if you decide to
add the MonadDES or MonadSD type class constraints to your function then it is
highly recommended to add the INLINE or INLINABLE pragma too like this.

-- | Actuate the event handler in the specified time points.
enqueueEventWithTimes :: MonadDES m => [Double] -> Event m () -> Event m ()
{-# INLINABLE enqueueEventWithTimes #-}
enqueueEventWithTimes ts e = loop ts
where loop [] = return ()

loop (t : ts) = enqueueEvent t $ e >> loop ts

108

Without this pragma, the enqueueEventWithTimes function would be slow,
because of using the MonadDES constraint.

At the same time, there would be no need to add such a pragma if your
function had no type class constraints, for example, when using the already
instantiated simulation computations like Event IO m.

109

Chapter 12

Distributed Simulation
Computation

Aivika distribution includes the aivika-distributed package that allows cre-
ating parallel and distributed simulation models[13] based on the optimistic
Time Warp method[3].

We run logical processes, possibly on different computers, or on different
threads of the same computer, or combining the both approaches. These pro-
cesses send themselves asynchronous messages that have timestamps. The
timestamp is a modeling time at which the specified message should be pro-
cessed.

The main issue of distributed simulation is as follows. So called the Paradox
of Time may happen, when some logical process may receive a message that
would look to the past of that process, where the message would have to be
processed in the past.

There are conservative methods that excludes the very possibility of occurring
the Paradox of Time. On the contrary, there are also optimistic methods that do
allow occurring the paradox, but they provide means for rolling the simulation
back so that the problematic message would indeed be processed precisely at
that time it has to be processed. We revert the modeling time of the logical
process in case of need. This rollback can be cascade involving many or even
all logical processes if required. The most famous optimistic method is called
Time Warp, which Aivika implements.

To pass messages over the network, Aivika uses Cloud Haskell repre-
sented by package distributed-process1 and such protocol implementations
as distributed-process-simplelocalnet2. Probably, you will need to learn
how to use these packages if you are going to use the Aivika distributed simu-
lation module.

1https://hackage.haskell.org/package/distributed-process
2https://hackage.haskell.org/package/distributed-process-simplelocalnet

110

12.1 DIO Computation

The aivika-distributed package exports a module that defines the DIO dis-
tributed simulation computation. This computation allows creating parallel
and distributed simulation models.

module Simulation.Aivika.Distributed

data DIO a

instance MonadDES DIO

Below the ProcessId type is used from the distributed-process package.
In our case it identifies a logical process. It is not important where that process
actually resides. It can be launched in another thread of the same operating
system process, or in another process of the same physical computer, or it
can represent a logical process that runs on another remote computer. The
ProcessId identifier transparently represents the logical process in all these
cases.

To distinguish this type from the discontinuous process identifiers, we will
prefix it by the DP namespace that should correspond to a qualified import from
package distributed-process.

import qualified Control.Distributed.Process as DP
import Control.Distributed.Process.Serializable

To send the message to another logical process, there is the following func-
tion.

sendMessage :: forall a. Serializable a => DP.ProcessId -> a -> Event DIO ()

Here the Serializable type class denotes something that can be serialized
to binary data and then sent over the network. Please consult the documenta-
tion of the distributed-process package.

The receive time will equal to the send time in the sendMessage function.
The original Time Warp method is able to process rollbacks in such cases. But
Aivika also supports rollbacks of additional kind that arise in case of retrying
the computations, for example, when the logical process comes temporarily to
illegal state, because not all messages have been delivered yet. Then we cannot
proceed with the simulation right now and we have to wait for other messages.
This situation is described in section 12.7.

Because of those rollbacks of the additional kind, it is highly recommended
to not use the sendMessage function at all; otherwise, the distributed simulation
may fall into infinite loop. The receive time should be greater than the send
time. You can add one millionth to the current modeling time and it will work.
Perhaps in one of the future versions of Aivika this restriction will be resolved.

To specify the exact receive time at which the message should be handled
by another logical process, we can use the next function.

enqueueMessage ::
forall a. Serializable a => DP.ProcessId -> Double -> a -> Event DIO ()

Each time the logical process receives a message, the corresponding signal
is triggered at the receive time by passing the message itself in signal value to
all listeners.

111

messageReceived :: forall a. Serializable a => Signal DIO a

If we want our logical process will receive the incoming messages of the
specified type then we have to subscribe to handling this signal.

Only we must initialize the logical process with care. You should never call
the sendMessage function at the start modeling time. If you will still do it then
there is a high chance that another logical process may receive and immediately
lose the incoming message before that logical process will even try to subscribe
to handling the messageReceived signal. The message receive time should be
always greater than the start modeling time.

12.2 Running DIO Computation and Time Server

Every start of the DIO computation is equivalent to a start of the corresponding
logical process. It is obvious that such simulation computations as Event DIO
a or Process DIO a can ultimately be reduced to the DIO computation. Then
the question is how to run the DIO computation itself?

Before doing this, we have to introduce the notion of so called time server.
At least, this is how it is called in Aivika and this name can be not very common
and widespread in the literature.

Aivika uses Samadi’s algorithm[2, 13] to synchronize the global virtual time
among all logical processes of the distributed simulation. The mentioned time
server is responsible for performing such a synchronization. Therefore, every
run of the distributed simulation must start by launching a new time server,
which should be single and unique for the whole distributed simulation.

timeServer :: Int -> TimeServerParams -> DP.Process ()

The first parameter defines a quorum for logical processes. After the spec-
ified number of logical processes connect to the time server, this time server
begins synchronizing the global virtual time. The second parameter specifies
the time server parameters. In the examples we will use the default parame-
ters, but you should consult the aivika-distributed documentation for more
detail.

defaultTimeServerParams :: TimeServerParams

Since the time server is designed to be launched in a separate node of the
cluster, there is a helper function that simplifies this use case:

curryTimeServer :: (Int, TimeServerParams) -> DP.Process ()

Note that DP.Process () is not the same as Process (). The former is
a computation defined in the distributed-process package, while the latter
represents some discontinuous process within simulation.

So, after running somewhere a single instance of the time server for the
entire distributed simulation, we receive the time server process identifier
DP.ProcessId and start running logical processes one by one, either in dif-
ferent local or remote nodes of the cluster.

Here the most simple strategy is to use one master node and many slave
nodes. Before running the master, we start the slave nodes, probably, on

112

different computers. Only then we run the master that connects to the slaves
and a new distribution simulation begins. After the simulation finishes, the
master node disconnects from the slave nodes, then it returns a final result
and stops, while the slave nodes can continue their work by waiting for a new
connection from new master node to run a new distributed simulation. Please
consult the distributed-process-simplelocalnet documentation to better
understand how it works.

To run a new logical process, we have to pass the time server process
identifier in the arguments of the following function.

runDIO :: DIO a -> DIOParams -> DP.ProcessId
-> DP.Process (DP.ProcessId, DP.Process a)

The first parameter defines the corresponding simulation computation that
we reduced to the DIO computation preliminarily. The second parameter de-
fines the logical process parameters, but we will use the default parameters
specified by value defaultDIOParams for simplicity.

defaultDIOParams :: DIOParams

The runDIO function launches a helper process that can accept incoming
messages from other logical processes and pass them to the corresponding
simulation computation. That helper process is called inbox. The inbox process
identifier and the simulation computation process are returned by this function.
Please note that it does not start the underlying simulation computation yet.
We have to apply and involve the returned simulation computation process
explicitly. Such an approach is quite flexible to allow us to run the distributed
simulation in different configurations.

To register itself in the time server, the logical process must apply the
registerDIO function. If the quorum is satisfied then the time server begins
synchronization.

registerDIO :: DIO ()

After the simulation finishes, the logical process of the master node should
call the terminateDIO function, while a similar logical process on the slave
node should call the unregisterDIO function.

terminateDIO :: DIO ()
unregisterDIO :: DIO ()

By the way, we might run a few distributed simulations on the same cluster.
There would be the same number of time server instances. Different logical
processes would share the same cluster nodes. But this scenario can be im-
practical as those simulations would interferer with each other by concurrent
accessing to the same limited computer resources.

12.3 Example: Equivalent Sequential Simulation

To demonstrate how the distributed simulation can be launched, we use the
same model from section 11.3. The model itself is still sequential formally, but
it is actually rewritten as distributed. The difference from the true distributed
simulation is that we use one node only. Everything else are attributes of the
distributed simulation.

113

import Control.Monad
import Control.Monad.Trans
import Control.Concurrent
import qualified Control.Distributed.Process as DP
import Control.Distributed.Process.Node (initRemoteTable)
import Control.Distributed.Process.Backend.SimpleLocalnet

import Simulation.Aivika.Trans
import Simulation.Aivika.Distributed

meanUpTime = 1.0
meanRepairTime = 0.5

specs = Specs { spcStartTime = 0.0,
spcStopTime = 10000.0,
spcDT = 1.0,
spcMethod = RungeKutta4,
spcGeneratorType = SimpleGenerator }

model :: Simulation DIO ()
model =
do totalUpTime <- newRef 0.0

let machine =
do upTime <-

randomExponentialProcess meanUpTime
liftEvent $
modifyRef totalUpTime (+ upTime)

repairTime <-
randomExponentialProcess meanRepairTime

machine

runProcessInStartTime machine
runProcessInStartTime machine

let upTimeProp =
do x <- readRef totalUpTime
y <- liftDynamics time
return $ x / (2 * y)

let rs =
results
[resultSource
"upTimeProp"
"The long-run proportion of up time (~ 0.66)"
upTimeProp]

printResultsInStopTime printResultSourceInEnglish rs

runModel :: DP.ProcessId -> DP.Process ()
runModel timeServerId =
do DP.say "Started simulating..."
let ps = defaultDIOParams { dioLoggingPriority = NOTICE }

m =
do registerDIO
a <- runSimulation model specs
terminateDIO
return a

(modelId, modelProcess) <- runDIO m ps timeServerId
modelProcess

master = \backend nodes ->

114

do liftIO . putStrLn $ "Slaves: " ++ show nodes
let timeServerParams =

defaultTimeServerParams { tsLoggingPriority = DEBUG }
timeServerId <-
DP.spawnLocal $ timeServer 1 timeServerParams

runModel timeServerId

main :: IO ()
main = do
backend <- initializeBackend "localhost" "8080" rtable
startMaster backend (master backend)
where
rtable :: DP.RemoteTable
-- rtable = __remoteTable initRemoteTable
rtable = initRemoteTable

Note to the ceremony we need to run the master node. This is actually
a template suitable for running logical processes on the slave nodes too. We
will use it further. Please see the distributed-process-simplelocalnet doc-
umentation to understand this pattern.

Also here we added different log levels by specifying the time server and
logical process parameters accordingly.

When running the model in WinGCHi on Windows 7, I received the follow-
ing output, although slightly edited manually with removed timestamps and
process identifiers to make it shorter.

GHCi, version 8.2.1: http://www.haskell.org/ghc/ :? for help
Prelude> :cd C:\Docs\Tests\test02-aivika-book
Prelude> :load "MachRep1Simple.hs"
[1 of 1] Compiling Main (MachRep1Simple.hs, interpreted)
Ok, 1 module loaded.
*Main> main
Slaves: []
[INFO] Time Server: starting...
Started simulating...
[DEBUG] Time Server: RegisterLogicalProcessMessage pid://localhost:8080:0:10
[INFO] Time Server: starting
[DEBUG] Time Server: computing the global time...
[DEBUG] Time Server: ComputeLocalTimeAcknowledgementMessage
[DEBUG] Time Server: LocalTimeMessage pid://localhost:8080:0:10 224.48176784549443
[INFO] Time Server: providing the global time = Just 224.48176784549443
[DEBUG] Time Server: computing the global time...
[DEBUG] Time Server: ComputeLocalTimeAcknowledgementMessage
[DEBUG] Time Server: LocalTimeMessage pid://localhost:8080:0:10 10000.0
[INFO] Time Server: providing the global time = Just 10000.0
[DEBUG] Time Server: TerminateTimeServerMessage pid://localhost:8080:0:10
[INFO] Time Server: start terminating...
[INFO] Time Server: terminate
[ERROR] Exception occurred: ProcessTerminationException

-- simulation time
t = 10000.0

-- The long-run proportion of up time (~ 0.66)
upTimeProp = 0.6707069678156755

If you will try to run the model in the Terminal on macOS then some lines
could be messed up. It is related to concurrent output to the same terminal
window.

115

It is worth noting that the ProcessTerminationException is not actually
error. It denotes that the corresponding inbox process or time server process
terminates. Here we could see from zero to two such messages generated by a
single logical process and/or the time server process. This is just a coincidence
that we see exactly one message, because the master process had stopped earlier.
By the tradition widely applied in server programming, this message has the
ERROR log level. In all other cases ERROR would indeed mean an error, but not
now. It was made intentionally to simplify the monitoring of the distributed
simulation.

12.4 Example: Making Simulation Distributed

In this section it will be shown how the model from section 12.3 can be converted
to a distributed model with message passing. This is quite an artificial example.
From the point of simulation, the example is even useless and the resulting
model is much slower than the original by obvious reasons, but like many
books this text is focused on describing the tools that can be useful for you
to build real models. So, this section is devoted to the functions for message
passing as well as to that how you can run a cluster.

We define a counter in the master node but send updates from two slave
nodes. Each slave node represents a separate machine tool. Therefore, the
master node must subscribe to receiving these updates. It is obvious that the
model creates a plenty of superfluous messages, but it demonstrates how the
messages can be sent and then handled by another logical process.

Since here are no computation retries, we can still use the sendMessage
function for simplicity, but you should understand that it is risky. Please use
the enqueueMessage function with a small time gap whenever possible.

{-# LANGUAGE TemplateHaskell #-}
{-# LANGUAGE DeriveGeneric #-}
{-# LANGUAGE DeriveDataTypeable #-}

import System.Environment (getArgs)

import Data.Typeable
import Data.Binary

import GHC.Generics

import Control.Monad
import Control.Monad.Trans
import Control.Concurrent
import qualified Control.Distributed.Process as DP
import Control.Distributed.Process.Closure
import Control.Distributed.Process.Node (initRemoteTable)
import Control.Distributed.Process.Backend.SimpleLocalnet

import Simulation.Aivika.Trans
import Simulation.Aivika.Distributed

meanUpTime = 1.0
meanRepairTime = 0.5

specs = Specs { spcStartTime = 0.0,
spcStopTime = 10000.0,

116

spcDT = 1.0,
spcMethod = RungeKutta4,
spcGeneratorType = SimpleGenerator }

newtype TotalUpTimeChange =
TotalUpTimeChange { runTotalUpTimeChange :: Double }
deriving (Eq, Ord, Show, Typeable, Generic)

instance Binary TotalUpTimeChange

-- | A sub-model.
slaveModel :: DP.ProcessId -> Simulation DIO ()
slaveModel masterId =
do let machine =

do upTime <-
randomExponentialProcess meanUpTime

liftEvent $
sendMessage masterId (TotalUpTimeChange upTime)

repairTime <-
randomExponentialProcess meanRepairTime

machine

runProcessInStartTime machine

runEventInStopTime $
return ()

-- | The main model.
masterModel :: Int -> Simulation DIO ()
masterModel n =
do totalUpTime <- newRef 0.0

let totalUpTimeChanged :: Signal DIO TotalUpTimeChange
totalUpTimeChanged = messageReceived

runEventInStartTime $
handleSignal totalUpTimeChanged $ \x ->
modifyRef totalUpTime (+ runTotalUpTimeChange x)

let upTimeProp =
do x <- readRef totalUpTime
y <- liftDynamics time
return $ x / (fromIntegral n * y)

let rs =
results
[resultSource
"upTimeProp"
"The long-run proportion of up time (~ 0.66)"
upTimeProp]

printResultsInStopTime printResultSourceInEnglish rs

runSlaveModel :: (DP.ProcessId, DP.ProcessId)
-> DP.Process (DP.ProcessId, DP.Process ())

runSlaveModel (timeServerId, masterId) =
runDIO m ps timeServerId
where
ps = defaultDIOParams { dioLoggingPriority = NOTICE }
m = do registerDIO

runSimulation (slaveModel masterId) specs
unregisterDIO

117

startSlaveModel :: (DP.ProcessId, DP.ProcessId) -> DP.Process ()
startSlaveModel x@(timeServerId, masterId) =
do (slaveId, slaveProcess) <- runSlaveModel x
slaveProcess

runMasterModel :: DP.ProcessId
-> Int
-> DP.Process (DP.ProcessId, DP.Process ())

runMasterModel timeServerId n =
runDIO m ps timeServerId
where
ps = defaultDIOParams { dioLoggingPriority = NOTICE }
m = do registerDIO

a <- runSimulation (masterModel n) specs
terminateDIO
return a

remotable [’startSlaveModel, ’curryTimeServer]

master = \backend nodes ->
do liftIO . putStrLn $ "Slaves: " ++ show nodes
let [n0, n1, n2] = nodes

timeServerParams =
defaultTimeServerParams { tsLoggingPriority = DEBUG }

timeServerId <-
DP.spawn n0
($(mkClosure ’curryTimeServer) (3 :: Int, timeServerParams))

(masterId, masterProcess) <- runMasterModel timeServerId 2
forM_ [n1, n2] $ \node ->

DP.spawn node
($(mkClosure ’startSlaveModel) (timeServerId, masterId))

masterProcess

main :: IO ()
main = do
args <- getArgs
case args of
["master", host, port] -> do
backend <- initializeBackend host port rtable
startMaster backend (master backend)

["slave", host, port] -> do
backend <- initializeBackend host port rtable
startSlave backend

where
rtable :: DP.RemoteTable
rtable = __remoteTable initRemoteTable

We define a separate Haskell type for each kind of messages and make it an
instance of the Serializable type class. For that, we use an ability of GHC to
derive the type class instances.

Also we invoke the functions on remote nodes. Cloud Haskell helps us to
do this, but we have to enable the Template Haskell extension.

Provided that the model was saved in the MachRep1.hs file, we can compile
it by typing the following command in the terminal.

$ ghc -O2 -threaded MachRep1.hs

The distributed model is supposed to be run on four nodes: three slaves
and one master node. In the beginning, we start our three slave nodes. For

118

simplicity, we run all nodes on localhost that has IP address 127.0.0.1, but we
could specify other IP addresses from local net.

$./MachRep1 slave 127.0.0.1 8080 &
$./MachRep1 slave 127.0.0.1 8081 &
$./MachRep1 slave 127.0.0.1 8082 &

The represented model indeed assumes that all nodes exist in the local net
and the master node has to find them without additional configuration. But in
real case we could rewrite the model and put the actual IP addresses in some
configuration file so that the master node could read that file and then establish
the connections with remote nodes. Then there would be no restriction to run
all nodes in the local net. We could fully use the Internet, instead.

Now to run the entire distributed simulation, we launch the master node
that initiates all the work.

$./MachRep1 master 127.0.0.1 8088

In my case I received the next output, provided here with some truncation
to make it shorter:

Slaves: [nid://127.0.0.1:8080:0,nid://127.0.0.1:8081:0,nid://127.0.0.1:8082:0]
[INFO] Time Server: starting...
[DEBUG] Time Server: RegisterLogicalProcessMessage pid://127.0.0.1:8081:0:10
[DEBUG] Time Server: RegisterLogicalProcessMessage pid://127.0.0.1:8082:0:10
[DEBUG] Time Server: RegisterLogicalProcessMessage pid://127.0.0.1:8088:0:9
[INFO] Time Server: starting
[DEBUG] Time Server: computing the global time...
[DEBUG] Time Server: ComputeLocalTimeAcknowledgementMessage
[DEBUG] Time Server: LocalTimeMessage pid://127.0.0.1:8088:0:9 10000.0
[DEBUG] Time Server: ComputeLocalTimeAcknowledgementMessage
[DEBUG] Time Server: LocalTimeMessage pid://127.0.0.1:8082:0:10 0.7354694026911183
[DEBUG] Time Server: ComputeLocalTimeAcknowledgementMessage
[DEBUG] Time Server: LocalTimeMessage pid://127.0.0.1:8081:0:10 0.2316644765668638
[INFO] Time Server: providing the global time = Just 0.2316644765668638
[DEBUG] Time Server: computing the global time...
[DEBUG] Time Server: ComputeLocalTimeAcknowledgementMessage
[DEBUG] Time Server: LocalTimeMessage pid://127.0.0.1:8082:0:10 408.2912566906416
[DEBUG] Time Server: ComputeLocalTimeAcknowledgementMessage
[DEBUG] Time Server: LocalTimeMessage pid://127.0.0.1:8081:0:10 453.81097898067776
[DEBUG] Time Server: ComputeLocalTimeAcknowledgementMessage
[DEBUG] Time Server: LocalTimeMessage pid://127.0.0.1:8088:0:9 897.564122712003
[INFO] Time Server: providing the global time = Just 408.2912566906416
[DEBUG] Time Server: computing the global time...
[DEBUG] Time Server: ComputeLocalTimeAcknowledgementMessage
[DEBUG] Time Server: ComputeLocalTimeAcknowledgementMessage
[DEBUG] Time Server: LocalTimeMessage pid://127.0.0.1:8082:0:10 10000.0

-- simulation time
t = 10000.0

-- The long-run proportion of up time (~ 0.66)
upTimeProp = 0.6679609105729915

[DEBUG] Time Server: ComputeLocalTimeAcknowledgementMessage
[DEBUG] Time Server: LocalTimeMessage pid://127.0.0.1:8088:0:9 10000.0
[DEBUG] Time Server: LocalTimeMessage pid://127.0.0.1:8081:0:10 10000.0
[INFO] Time Server: providing the global time = Just 10000.0
[DEBUG] Time Server: UnregisterLogicalProcessMessage pid://127.0.0.1:8082:0:10

119

[INFO] Time Server: providing the global time = Just 10000.0
[DEBUG] Time Server: UnregisterLogicalProcessMessage pid://127.0.0.1:8081:0:10
[INFO] Time Server: providing the global time = Just 10000.0
[ERROR] Exception occurred: ProcessTerminationException
[ERROR] Exception occurred: ProcessTerminationException
[DEBUG] Time Server: TerminateTimeServerMessage pid://127.0.0.1:8088:0:9
[INFO] Time Server: start terminating...
[INFO] Time Server: terminate
[ERROR] Exception occurred: ProcessTerminationException

In this dump we see how the global virtual time increased monothonically
until it became equal to the final simulation time.

If you are a happy user of Linux or macOS then you can start the master node
many times, each time running a new distributed simulation with the same
slave nodes. Unfortunately, by some unknown cause the network libraries
work unstable on Windows...

Finally, it is worth noting that in the recent versions of the applied net-
work libraries word localhost is not recognized as an acceptable IP address
anymore. Instead, you should specify explicitly 127.0.0.1.

12.5 Input/Output Operations

The Input/Output operations require a special treating in the optimistic dis-
tributed simulation, for they cannot be reverted in general case. If such a
request comes from the model then the corresponding logical process tries to
synchronize its value of the global virtual time. It will wait until the local
queue time will become equal to the global virtual time. The difficult question
is how to handle a possible situation if the rollback occurs in the course of this
synchronization. Fortunately, there is a robust and flexible way how to process
safely such a rollback, which we will consider below in this section.

The distributed Event and Process computations are MonadIO instances.

instance MonadIO (Event DIO)
instance MonadIO (Process DIO)
instance MonadIO (Composite DIO)

We might call directly the liftIO function from any place of the distributed
simulation, but it would be unsafe by the reason described above. If the rollback
indeed occurred during the global virtual time synchronization and the local
queue time was still greater than the global virtual time, then a run-time error
would be raised that should lead to interrupting the entire simulation. The
solution could be to use liftIO in safe blocks only.

Besides, calling liftIO at the start modeling time is always safe and fast
as there is no need in synchronization. There cannot be any rollback yet when
the simulation has been started only. Invoking IO actions at the start modeling
time can be useful if you are going to read some data from files or databases to
initialize the simulation.

There is a very similar analog of the enqueueEvent function that also regis-
ters a new event at the specified time.

enqueueEventIO :: EventIOQueueing m => Double -> Event m () -> Event m ()

120

The key difference is that it guarantees that the local queue time will be equal
to the global virtual time, when invoking the corresponding event handler at
the specified time. This is exactly what we need to call safely liftIO!

instance EventIOQueueing DIO

How does it work? The enqueueEventIO function places the new event in
the queue too. But before actuating the corresponding event handler, the logical
process begins synchronizing its value of the global virtual time. It waits until
the local queue time becomes equal to the global virtual time. If the condition
satisfies then the event handler is invoked, where we can safely call liftIO as
the local time is already synchronized.

But if the rollback occurs instead of successful synchronization then nothing
special is applied. It just interrupts the synchronization and the rollback takes
place. Nothing has changed, none IO action has been applied. So, it can
safely perform the rollback. After the rollback, the corresponding event can be
repeated again after its time comes with the next attempt.

So, it is quite safe to write the code like this:

t <- liftDynamics time
liftEvent $
enqueueEventIO t $
liftIO $
-- here we could read in or write to some file, for example

Actually, the Process computation could implicitly generate such a code,
when applying the liftIO function. But it was decided to not implement this
as the order of IO actions would be unpredictable then.

Finally, because of permanent synchronizations of IO actions, it is highly
recommended to use the Ref reference instead of the standard IORef reference
whenever possible. The Ref type is much, much more lightweight and fast.
Moreover, the Ref reference efficiently supports rollbacks.

12.6 Modeling Time Horizon

There is one unexpected use case for the enqueueEventIO function. By calling
this function, we can limit the horizon of modeling time during distributed simu-
lation, which specifies how far we can go from some time point in the past to
which we can rollback yet.

runEventInStartTime $
enqueueEventIOWithTimes [100, 200..] $
return ()

Here the local queue time will be synchronized with the global virtual time
in time points 100, 200, 300,

But there is a much more efficient way to define the time horizon. We can
specify it explicitly in the dioTimeHorizon field, when passing DIOParams to
the logical processes. There is a general recommendation to define the time
horizon whenever possible, but its value strongly depends on the specified
model.

Here is another paradox, but by restricting the speed of simulation for each
logical process, we may improve the overall performance of the distributed

121

simulation. We can realize it in the following way. Introducing the explicit
time horizon leads to a less number of rollbacks and the rollbacks themselves
become of less size, which may improve the overall speed of simulation. The
right answer must not be always intuitive.

Moreover, the DIOParams type specifies thresholds for some queue sizes.
Besides other queues, there is a log of actions, the output message queue and
a queue for transient messages, where the logical process sent the message but
did not receive yet an acknowledgment from another logical process.

There are defaults for these threshold values. We can change them before
starting a new distributed simulation. So, if one of the thresholds is exceeded,
then the logical process passes to the throttling mode, when it processes only
the past messages, trying to decrease the queue sizes. Here is a pitfall that you
should know of, though.

For example, let us assume that the size threshold for the output message
queue is 10000, but the logical process tries to send 20000 messages simultane-
ously at time t = t0. While sending the 10000-th message, the logical process
passes immediately to the throttling mode. Unfortunately, it cannot exit from
this mode with the specified threshold value. Even if the global virtual time
eventually becomes equal to t0, then the logical process still cannot remove
all sent 10000 messages from the output queue. If the global virtual time was
greater than t0, then it could do, but now the global virtual time cannot exceed
the local queue time. So, the logical process stays in the throttling mode forever.
The solution would be to increase the size threshold, at least, up to 20001, or to
not send so many messages simultaneously at the same modeling time t0.

Thus, the global virtual time value has a very important meaning in the
optimistic distributed simulation. We cannot rollback to the time, which is less
than the global virtual time. Therefore, we can safely remove all items from
the queues that are related to the past with time values, which are less than the
global virtual time.

12.7 Retrying Computations

The distributed simulation has another caveat related to the fact that not all
messages may arrive in time or in order. As a result, such a strange situation
may arise when the logical process passes temporarily to illegal state and the
further proceeding with simulation has no sense until we receive all messages,
which should lead to a saving rollback that would already recover the normal
order of simulation.

For example, we cannot release a resource or GPSS storage if it already has
the maximum available contents. If such a situation still happen then a special
exception of type SimulationRetry is raised, which is handled by the Aivika
distributed module. The simulator passes to a special mode, when it accepts
the messages only in hope that they will eventually lead to a rollback.

We can artificially raise this exception by calling the next function that
accepts a debugging message that will be displayed in the terminal window if
the attempt to retry the computation will still fail.

retryEvent :: MonadException m => String -> Event m a

122

There is one caution related to the rollbacks of such a second kind, though.
If one of the messages has equaled receive and send time then the simulation
may fall into infinite loop. Probably, this is just a limitation of the current
implementation.

At least, if the receive time will be greater than the send time, had their
difference been one millionth, then the rollbacks of this second kind are handled
properly. Therefore, it is strongly recommended to use the enqueueMessage
function instead of sendMessage.

12.8 Recovering After Temporary Connection Errors

Aivika is able to recover the distributed simulation after temporary connection
errors, but this mode must be enabled explicitly in the configuration parameters.

For example, if we will take a model from 12.4 then we will need to apply
the following changes:

runSlaveModel :: (DP.ProcessId, DP.ProcessId)
-> DP.Process (DP.ProcessId, DP.Process ())

runSlaveModel (timeServerId, masterId) =
runDIO m ps timeServerId
where
ps = defaultDIOParams { dioLoggingPriority = NOTICE,

dioProcessMonitoringEnabled = True,
dioProcessReconnectingEnabled = True }

m = do registerDIO
runSimulation (slaveModel masterId) specs
unregisterDIO

startSlaveModel :: (DP.ProcessId, DP.ProcessId) -> DP.Process ()
startSlaveModel x@(timeServerId, masterId) =
do (slaveId, slaveProcess) <- runSlaveModel x
DP.send slaveId (MonitorProcessMessage timeServerId)
DP.send masterId (MonitorProcessMessage slaveId)
DP.send slaveId (MonitorProcessMessage masterId)
slaveProcess

runMasterModel :: DP.ProcessId
-> Int
-> DP.Process (DP.ProcessId, DP.Process ())

runMasterModel timeServerId n =
runDIO m ps timeServerId
where
ps = defaultDIOParams { dioLoggingPriority = NOTICE,

dioProcessMonitoringEnabled = True,
dioProcessReconnectingEnabled = True }

m = do registerDIO
a <- runSimulation (masterModel n) specs
terminateDIO
return a

remotable [’startSlaveModel, ’curryTimeServer]

master = \backend nodes ->
do liftIO . putStrLn $ "Slaves: " ++ show nodes
let [n0, n1, n2] = nodes

timeServerParams =
defaultTimeServerParams { tsLoggingPriority = DEBUG,

tsProcessMonitoringEnabled = True,

123

tsProcessReconnectingEnabled = True }
timeServerId <-
DP.spawn n0
($(mkClosure ’curryTimeServer) (3 :: Int, timeServerParams))

(masterId, masterProcess) <- runMasterModel timeServerId 2
DP.send masterId (MonitorProcessMessage timeServerId)
forM_ [n1, n2] $ \node ->

DP.spawn node
($(mkClosure ’startSlaveModel) (timeServerId, masterId))

masterProcess

We enable the dioProcessMonitoringEnabled parameter along with the
dioProcessReconnectingEnabled parameter for the logical processes. Simi-
larly, we enable the tsProcessMonitoringEnabled parameter as well as the
tsProcessReconnectingEnabled parameter for the time server. Also we send
the MonitorProcessMessagemessage to start sending keep-alive messages for
each possible connection by specifying the sender and receiver process identi-
fiers, respectively.

In such a case, the distributed simulation is able to recover itself after tem-
porary connection errors. But the simulation cannot wait indefinitely long for
other logical processes. What if one of the cluster nodes shut down completely?
You will find an answer in the next section.

12.9 Stopping Disconnected Simulation

When disconnection errors occur, there are time-out intervals within which the
distributed simulation will wait for other logical processes before considering
them as completely lost. It is required to stop automatically the distributed
simulation if the cluster breaks for a long enough time by some reason. One of
the cluster nodes may reset or shut down. The network connection can be lost
forever and so on.

The approach is quite simple. Since the time server is a single point of
failure, it is sufficient to check the connections of the time server, which is
unique for each distributed simulation run.

By default strategy, if the time server did not receive any message from one of
the logical processes within the time-out interval specified by data constructor
TerminateDueToLogicalProcessTimeout (=5 minutes by default) then the time
server stops itself. To this interval, we usually have to add also a time-out used
for session synchronization specified by the tsTimeSyncTimeout parameter (=1
minute by default). So, after 6 minutes (=5+1) the time sever shall stop itself.

There are similar data constructor TerminateDueToTimeServerTimeout and
parameter dioSyncTimeout for the logical process with the same default values.
They mean that if the logical process did not receive any message from the time
server within the specified time-out interval then the logical process stops itself.
By default, it will stop after 6 minutes (=5+1) too.

In other words, if the cluster is broken then its alive rest part will stop itself,
at least, in 12 minutes (=6+6). But you can change the default values.

Therefore, it is very important to send keep-alive messages that must be
enabled by direct sending the MonitorProcessMessage message in the very
beginning of every distributed simulation run. Then you should also enable
the monitoring and reconnecting parameters as it was described in section 12.8.

124

12.10 Distributed Simulation As Service

In continuation of the previous two sections, we will talk about the creation of
simulation services.

So, the distributed simulation can recover itself after temporary connection
errors. But if the disconnection lasts too long then all parts of the distributed
simulation cluster automatically stop themselves after exceeding the time-out
intervals that specify how long we can wait for logical processes in case of
connection errors.

Even if the slave logical process stops then its computational node remains
active and it can accept a new simulation run. But if the node’s computer was
restarted then the node itself can be launched again, for example, as a service
of the Linux operating system, and the node becomes ready again to accept the
new simulation run. Something serious must happen if the node cannot restore
itself, but it is usually solved on another level by duplicating the corresponding
computer node.

Regarding the master logical process, it works by principle all-or-nothing.
Either the master logical process will return the result, and it will be a correct
result, for the simulation is analytic, or the master logical process will exit with
some error. In the last case we can start a new simulation run after some delay
in hope that the slave nodes will restore.

All this allows creating safe and robust simulation services with the desired
response characteristics based on using the Linux operation system for the
distributed cluster.

12.11 Monitoring Distributed Simulation

We might monitor the distributed simulation by observing the log messages,
but it is more reasonable and preferable to write errors and warnings only in
the log, while the monitoring itself can be implemented on another level.

There are additional run functions for the time server and logical process.
They allow us to specify the handlers that would already process the monitoring
information, probably, by sending this information to some external specialized
tool.

timeServerWithEnv :: Int -> TimeServerParams -> TimeServerEnv -> DP.Process ()

This function runs a new time server, where the TimeServerEnv data type
can specify the function that will be called from a separate process each time
the Aivika simulator wants to send the monitoring data.

data TimeServerEnv =
TimeServerEnv { tsSimulationMonitoringAction ::

Maybe (TimeServerState -> DP.Process ())
}

The TimeServerState data type describes the current state of the time
server. It includes the global virtual time and a list of registered logical pro-
cesses. In the handler, you can send this information further to a special
monitoring tool, or just print it in the standard output, or write it to some file.

125

The interval between sessions of sending the monitoring data is specified by
the tsSimulationMonitoringInterval parameter of TimeServerParams that
you can define, when starting the time server.

Similarly, we can run a new logical process by specifying a parameter of the
DIOEnv type:

runDIOWithEnv :: DIO a -> DIOParams -> DIOEnv -> DP.ProcessId
-> DP.Process (DP.ProcessId, DP.Process a)

This type can contain a handler too, but suitable already for processing the
logical process monitoring information.

data DIOEnv =
DIOEnv { dioSimulationMonitoringAction ::

Maybe (LogicalProcessState -> DP.Process ())
}

TheLogicalProcessStatedata type describes the current state of the logical
process. It includes the local time of the process, the local queue time, the event
queue size, the rollback log size, the count of input messages, the count of
output messages, the count of outgoing messages that are not delivered yet,
the total count of rollbacks performed. In the handler, you can also send this
information further to the external monitoring tool, or print it in the standard
output, or write it to some file.

Also the interval between monitoring sessions is specified by parameter
dioSimulationMonitoringInterval of DIOParams that you can define, when
starting the logical process.

Thus, the simulator can provide us with the actual monitoring information
about the current state of the distributed simulation.

12.12 Distributed Simulation Experiment

As before, under the name of simulation experiment, we mean the Monte-
Carlo simulation, where we create a Web page with the results of simulation
represented as charts, histograms, summary statistics, links to generated CSV
tables and so on.

The distributed simulation experiment is complicated by the fact that the
optimistic method is applied, which means that a plenty of rollbacks can be
generated in the course of simulation. Moreover, the simulation is distributed
and the nodes of the cluster can reside in physically different computers.

Therefore, the following approach is suggested, which will work for any
type of simulation, both sequential and distributed. The resulting data are
processed in the end of every simulation run. The data are saved in SQL
databases. After the simulation experiment is complete, we can build a report
with the simulation results by using the data stored in the SQL databases.

We need additional libraries that are included in Aivika Extension Pack. See
appendix A for installation instructions. But the subject goes beyond the scope
of this book. So, the distributed simulation experiment is not described here.
We note only that there is such a possibility.

126

12.13 Summary

Aivika allows running parallel and distributed discrete event simulation mod-
els based on using the optimistic Time Warp method. The simulation can be
launched on a single computer, or a cloud service such as Amazon, or a true dis-
tributed cluster. Different network protocols are supported by Cloud Haskell,
which Aivika uses to connect logical processes. For example, the computers
can be connected via the ordinary Internet.

The distributed simulation is able to recover itself after temporary connec-
tion errors, but there is an embedded mechanism that stops the simulation after
exceeding time-out intervals. So, we can build robust simulation services with
the desired response characteristics. Moreover, such a distributed simulation
can be monitored in real time.

Besides all wonderful advantages that the distributed simulation can give
to us, it is worth noting again that this type of simulation is not free. In the
most of cases the sequential simulation will be much faster and it will be much
more easy-to-use. The message passing and a start of distributed simulation
are costly operations. The start is related to a slow initialization of network
services, while the message passing is costly per se, but it also may potentially
generate rollbacks. So, there must be a strong reason, why the distributed
model cannot be written as a sequential one. Either the model is too huge so
that it cannot reside in the memory of single computer, or we can gain real
benefits from parallelism by launching many parallel logical processes.

However, this is an exciting thing that we can build sequential and dis-
tributed simulation models based on the same unified approach that Aivika
provides. As we will see soon later, the same approach is suitable for nested
simulation too. For example, everywhere we can use events, agents, discontinu-
ous processes and everything else built on top of them, including the GPSS-like
DSL described in chapter 10.

127

Part III

Nested Simulation

128

This part is about nested simulation, when we can run simulations within
simulations, then new simulations within those simulations within simulations
and so on, recursively. It can be divided into two types of nested simulation.

The first type suggests a more flexible approach, when we can branch a
new nested simulation at any time, but it may lead to an exponential growth of
simulations within the initial simulation. Therefore, we usually have to limit
the growth of the tree of simulations by some depth.

The second approach uses a special but very smart structure instead of the
tree. It is known as a lattice. Here the nested simulations are created only in a
limited number of the lattice nodes, but we can traverse such nodes in quadratic
time, though. For example, it could be useful for financial modeling.

129

Chapter 13

Branches

At first we will consider a type of nested simulation, when we can branch a
new nested simulation at any time. It corresponds to a tree of simulations that
potentially has an exponential growth of the nodes.

◦ . . .

◦

99

%%
◦ . . .

◦

CC

��

◦ . . .

◦

99

%%
◦ . . .

13.1 Branching Simulation Computation

The aivika-branches package implements the corresponding type of nested
simulation. It defines the BR simulation computation, which should be param-
eterized itself by the IO monad to be an instance of MonadDES from chapter
11.
module Simulation.Aivika.Branch

data BR m a

instance MonadDES (BR IO)

The computation has a very simple run function that returns a value in the
underlying monad.
runBR :: MonadIO m => BR m a -> m a

We will see soon how we can create a tree of nested simulations. We have to
limit this tree by some depth. Therefore, we need a function that would return
the current branch level starting from 0.

130

branchLevel :: Monad m => BR m Int

The root source simulation has level 0. The next simulations created within
the root simulation will have level 1. Then new nested simulations created
within those next simulations will have level 2 and so on.

Now it is time to show how we can create nested simulations.

branchEvent :: Event (BR IO) a -> Event (BR IO) a

The branchEvent function branches a new nested simulation, runs the speci-
fied computation within it at the same modeling time and then returns the result
to the parent simulation.

It is very important that the nested simulation cannot change in any way
neither the event queue of the parent simulation, nor any its Ref reference
values, that is, the nested simulation cannot change the state of the model from
the parent simulation.

This is yet one reason, why you should use the Ref type instead of the
standard IORef reference whenever possible. Although IORef can still be
useful, for example, to turn some trigger on, if we have found something
in the nested simulation, but the number of such scenarios is quite limited.

You can think of the new branch as a clone of the model state from the
current simulation. This is a very cheap and fast operation of creating the
branch, but it is not free, though. The clone inherits the recent state of its
parent. The events that had to be actuated should be actuated too but already
within the nested simulation without affecting the parent simulation. The Ref
reference will inherit its state from the parent simulation, but any change of the
Ref reference will not affect the parent simulation in any way.

Furthermore, we can branch a new nested simulation within the already
branched simulation. Each time we create a new nested simulation, we increase
the branch level by one relative to the parent simulation.

It can be useful to start the branched simulation with some delay in mod-
eling time so that all pending events would be processed within the nested
simulation. Therefore, there is another function that allows specifying the ex-
act time at which we should run the given computation in the future, although
this is conceptually very similar to branchEvent, just the start modeling time
differs:

futureEvent :: Double -> Event (BR IO) a -> Event (BR IO) a

Here the first parameter specifies the time of activating a computation, but
the result is returned to the parent simulation at the current modeling time as
before. It is important that the parent simulation is then proceeded with the
current modeling time. Therefore, this is the Event computation by the way,
not Process.

13.2 Example: Simulation Branches

To demonstrate the use of nested simulation, we will consider a quite conceptual
example, where we will estimate the random value by averaging its further
estimations made in the future. As usual, we will use our favourite model from
section 11.3.

131

There are two machines, which sometimes break down. Up time is
exponentially distributed with mean 1.0, and repair time is expo-
nentially distributed with mean 0.5. There are two repairpersons, so
the two machines can be repaired simultaneously if they are down
at the same time. Output is long-run proportion of up time. Should
get value of about 0.66.

The Haskell model is as follows. It is quite simple.

import Control.Monad
import Control.Monad.Trans

import Simulation.Aivika.Trans
import Simulation.Aivika.Branch

meanUpTime = 1.0
meanRepairTime = 0.5

specs = Specs { spcStartTime = 0.0,
spcStopTime = 1000.0,
spcDT = 1.0,
spcMethod = RungeKutta4,
spcGeneratorType = SimpleGenerator }

maxLevel = 10

delta :: Int -> Parameter (BR IO) Double
delta n =
do t0 <- liftParameter starttime
t2 <- liftParameter stoptime
return $ (t2 - t0) / fromIntegral n

forecast :: Event (BR IO) Double -> Event (BR IO) Double
forecast m =
do let loop dt0 i =

do level <- liftComp branchLevel
if level <= maxLevel
then do t <- liftDynamics time

x1 <- futureEvent (t + dt0) $ loop dt0 (i - 1)
x2 <- futureEvent (t + dt0) $ loop dt0 (i + 1)
let x = (x1 + x2) / 2
x ‘seq‘ return x

else m
dt0 <- liftParameter $ delta maxLevel
loop dt0 0

model :: Simulation (BR IO) (Results (BR IO))
model =
do totalUpTime <- newRef 0.0

let machine =
do upTime <-

randomExponentialProcess meanUpTime
liftEvent $
modifyRef totalUpTime (+ upTime)

repairTime <-
randomExponentialProcess meanRepairTime

machine

runProcessInStartTime machine
runProcessInStartTime machine

132

let upTimeProp =
do x <- readRef totalUpTime
t <- liftDynamics time
return $ x / (2 * t)

upTimePropForecasted <-
runEventInStartTime $
forecast upTimeProp

return $
results
[resultSource
"upTimeProp"
"The long-run proportion of up time (~ 0.66)"
upTimeProp,
--
resultSource
"upTimePropForecasted"
"The forecasted long-run proportion of up time"
(return upTimePropForecasted :: Event (BR IO) Double)]

main :: IO ()
main =
runBR $
printSimulationResultsInStopTime
printResultSourceInEnglish
model specs

Note how we estimate the Event computation by dividing it into two parts
and then getting the average value in the helper forecast function. We do it
recursively so that the tree depth will not exceed 10 levels starting from 0. Here
we create 210+1

− 1 = 2047 simulations including the source root simulation
itself.

Also the upTimePropForecasted variable is a pure value of type Double.
Therefore, we wrap it in the Event computation to return as a result source.

When running the model, I received the following output:

$ time ./MachRep1

-- simulation time
t = 1000.0

-- The long-run proportion of up time (~ 0.66)
upTimeProp = 0.6784040642495368

-- The forecasted long-run proportion of up time
upTimePropForecasted = 0.6636117393274816

real 0m3.845s
user 0m3.778s
sys 0m0.039s

As we can see, 2047 simulations lasted for about 4 seconds. The root source
simulation passed all the modeling time interval from start to end, while the
nested simulations were short-term with intervals equaled to (1000−0)/10 = 100
time units. The forecasted estimation seems to be more precise than the first
value.

133

13.3 Summary

By creating new branches, we can run nested simulations at any moment and as
many times as we want. It allows us to predict the future behavior of the current
simulation. Moreover, it could be an addition to the Monte-Carlo method as
now we can increase the total number of simulations considered for estimating
random values.

But the most big problem with the branches is that they have an exponential
complexity relative to depth of the tree of nested simulations. The more we
look into the future, the more nodes we have to traverse, which can eventually
lead to a combinatorial explosion.

In the next chapter we will consider another type of nested simulation,
where the complexity of traversing the nodes is quadratic, which will allow
us to look deeply in the future. Only we should apply that type of nested
simulation with some care understanding clearly, when it is applicable.

134

Chapter 14

Lattice

The described below in this chapter is quite experimental. There was a beautiful
idea that is widely applied in financial modeling. I was so impressed by the
idea that I decided to apply it for discrete event simulation. Please consider the
described below method under a prism of critical analysis.

14.1 Introducing Lattice

Let us start from financial modeling[11] by considering a short-term interest
rate evolution.

8%

7%

88

&&
6%

88

&&

6%

5%

88

&&

5%

88

&&
4%

88

&&

4%

3%

88

&&
2%

Note that some nodes have two parents. This is why the structure is called
a lattice. It has a linear growth in the width of the tree with time, which makes
traversing the nodes a computationally feasible task.

Now we slightly transform the lattice for the further consideration. This is
the same structure as before. Only the nodes are located differently. Also it has
another system of coordinates.

135

i //

k

��

0 1 2 3

0 5% //

&&

6% //

&&

7% //

&&

8%

1 4% //

&&

5% //

&&

6%

2 3% //

&&

4%

3 2%

Now let us imagine that the lattice nodes represent some nested simulations
or the source simulation in case of the root. Since every nested simulation must
be derived from some unique parent simulation, we randomly select parents
for the interior nodes that they derived from by denoting the corresponding
relations by dotted arrows. As before, the interior nodes have two parents, but
they may derive only from one of them.

i //

k

��

0 1 2 3

0 ◦ //

$$

◦ //

$$

vv
◦ //

$$

vv
◦

vv

1 ◦ //

$$

YY

◦ //

$$

YY

◦
vv

2 ◦ //

$$

YY

◦

YY

3 ◦

YY

For example, here we made a choice that the nested simulation at coor-
dinates (i, k) = (2, 1) has two derived children at coordinates (3, 1) and (3, 2).
At the same time, there could be nested simulations that would no have any
derived children. But the most of nodes represented on the figure have exactly
one derived child.

More strictly, we say that the child nested simulation is derived from the
corresponding parent simulation, if the former was branched from the latter as
we understood it in chapter 13.

Obviously, when deciding what nodes are derived from which nodes, we
loose the information. But making an assumption that every interior node has
exactly two child nodes, we apply a trick that allows us to build a lattice with
quadratic complexity of traversing the nodes. As you remember, the nodes
represent nested simulations except for the root node that represents the source
simulation itself.

136

Let coordinate i be called a time index, while coordinate k be called a member
index. Provided the size of the lattice equaled to n, the following constraints are
satisfied:

0 ≤ i ≤ n, (n > 0)
0 ≤ k ≤ i.

Time index i = 0 will correspond to the start time of simulation, but i = n
will correspond to the final time of simulation. Other values of the time index
will correspond to modeling time points from the grid with equaled step.

ti = starttime + i ∗
(stoptime − startime)

n

So, if the nested simulation has coordinates (i, k) then its modeling time will
be exactly ti.

The root simulation is an exception. The root simulation may pass through
all the time interval from start to end like that how it was the case in other
types of simulation. But all nested simulations are eventually derived from the
root simulation when it had a modeling time equaled to the start time. Hence,
before we start creating the branches, the root simulation must already contain
all the necessary future events.

The total number of all lattice nodes equals to

(1 + (n + 1))
2

× (n + 1) ≤ (n + 1)2,

which makes the traversing of the lattice nodes a computationally feasible task
even for quite large n values.

For example, if n = 1000 then we will have 501501 simulations only, not so
great value for the modern computers, especially if 501500 nested simulations
among them are short-term!

14.2 Lattice Data Type

An experimental implementation is represented by the aivika-lattice pack-
age that exports definitions in the following module.

module Simulation.Aivika.Lattice

The lattice is represented by the LIOLattice data type. To construct it, we
have to pass the size and a function that would return a member index of the
parent simulation node by the specified time and member indices of the child
simulation node. Then the child nested simulation would be derived from the
specified parent simulation by branching from the latter.

lattice :: Int
-- ^ the lattice size
-> (Int -> Int -> Int)
-- ^ get the parent member index by the specified
-- time and member indices
-> LIOLattice

137

Fortunately, there is a more convenient function that allows generating
random lattices by the specified probability and size, where the probability
defines whether the interior child node derives from the right parent. The
second function just calls the first one with probability 0.5.

newRandomLatticeWithProb :: Double -> Int -> IO LIOLattice

newRandomLattice :: Int -> IO LIOLattice
newRandomLattice = newRandomLatticeWithProb 0.5

Actually, the lattice is related to the binomial random variable. What prob-
ability to use is a subject of analysis that depends on the specified model.

14.3 Lattice Simulation Computation

The aivika-lattice package defines the LIO monad that can be used for
running nested simulations in lattice nodes.

data LIO a

instance Monad LIO
instance MonadIO LIO
instance MonadDES LIO

Since LIO is a MonadDES instance, we can parameterize the generalized ver-
sion of Aivika by this computation. As it was already mentioned before, this
fact literally means that we can define events, discontinuous processes, agents
and GPSS-like blocks within nested simulations that are run in the lattice nodes.

We can run the LIO computation by the specified lattice object.

runLIO :: LIOLattice -> LIO a -> IO a

Every lattice node corresponds to some time index and member index as it
was specified in section 14.1. We can request for them within the LIO compu-
tation that is executed in the current lattice node.

latticeTimeIndex :: LIO Int
latticeMemberIndex :: LIO Int
latticeParentMemberIndex :: LIO (Maybe Int)

The latticeParentMemberIndex function returns the member index of the
parent lattice node that the current node was derived from, that is, branched
from. The exception is a root node that has no parent as it represents the source
simulation itself. The parent node has always a time index equaled to the
current time index minus one.

Also we can request for the lattice size, i.e. the depth of the lattice tree.

latticeSize :: LIO Int

To get the modeling time in the current lattice node, we can call the following
function.

latticeTime :: Parameter LIO Double

138

It can be useful to get a list of the time values corresponding to all lattice
nodes, for example, to implement the binomial option pricing model.

latticeTimes :: Parameter LIO [Double]

But there is a convenient function that actuates the specified handler in all
the lattice nodes.

enqueueEventWithLatticeTimes :: Event LIO () -> Event LIO ()

14.4 Observable Computation

After the simulation is ending, we receive a bulk of data that should be used yet,
when estimating some random values. The nested simulation within lattice is
all about estimating such values.

There is an intermediate computation that creates a bridge between the
simulation and estimation blocks. This is the Observable type class from the
aivika-transformers package.

class Observable o m where
readObservable :: o a -> m a

Some type is an Observable if we can read its value within some computa-
tion. Note that we parameterize the type class also by the computation within
which we can read the current value.

It is important that theRef reference isObservablewithin a computation, we
will introduce shortly in the next section. Thus, our discrete event simulation
should evolve to update someRef references that we will use later for estimating
some random values.

14.5 Estimate Computation

The estimation block is based on using the Estimatemonad transformer.

data Estimate m a

instance MonadTrans Estimate
instance Monad m => Monad (Estimate m)
instance MonadIO m => MonadIO (Estimate m)

The Estimatemonad is exactly that computation within which we can read
the Ref references.

instance Observable (Ref LIO) (Estimate LIO)

It makes sense to run the Estimate computation in the start modeling time
only. From there we can traverse recursively all the nodes.

runEstimateInStartTime :: MonadDES m => Estimate m a -> Simulation m a

We can request for the current modeling time within the Estimate compu-
tation. The Esimate computation runs precisely in the lattice nodes.

139

estimateTime :: MonadDES m => Estimate m Double

There are different combinators and the most important among them is
as follows. It invokes the specified Estimate computation in the lattice node
specified by its time and member indices. In such a way, we can request for
values in both the future and past lattice nodes.

estimateAt :: Int
-- ^ the lattice time index
-> Int
-- ^ the lattice member index
-> Estimate LIO a
-- ^ the computation
-> Estimate LIO a

There is a convenient foldEstimate function that allows folding some com-
putation by using the specified reducing function that will be applied in the
intermediate lattice nodes. The values estimated in two child nodes will be
passed recursively to the provided reducing function until we reach the source
node. The computation itself will be called in the terminating lattice nodes
before that.

-- | Fold the estimation of the specified computation.
foldEstimate :: (a -> a -> Estimate LIO a)

-- ^ reduce in the intermediate nodes of the lattice
-> Estimate LIO a
-- ^ estimate the computation in the final time point
-> Simulation LIO (Estimate LIO a)

By calling the foldEstimate function from the root lattice node, we will
eventually traverse all the lattice nodes.

For example, it allows us to implement the snell operator[11], which can be
useful for estimating option prices and contract prices in financial modeling.

The foldEstimate function itself uses a combinator that allows memoizing
the already calculated values in the lattice nodes.

memoEstimate :: (Estimate LIO a -> Estimate LIO a)
-- ^ estimate in the intermediate time point of the lattice
-> Estimate LIO a
-- ^ estimate in the final time point of the lattice
-> Simulation LIO (Estimate LIO a)

This combinator allows defining recursive computations in the lattice nodes.

14.6 Example: Binomial Distribution

As it was mentioned before, the lattice is highly related to the binomial random
value. Let us try to estimate an impact of the terminating lattice nodes under
assumption that the both child nodes have equal probabilities. It is easy to
see that the member index will have a binomial distribution with parameter
p = 0.5.

Now we will write a simulation model to see this computationally. We will
use additional functions from the aivika-experiment package for building a

140

histogram. Only please note that building such a histogram has an exponen-
tial complexity unlike the very process of traversing the nodes, which has a
quadratic complexity already.

Therefore, it is not recommended to repeat the experiment with large lat-
tice sizes. Instead, if we gathered the SamplingStats statistics then we could
already run the experiment with large lattice sizes. But the histogram is more
demonstrative to see the real distribution, which can be approximated by nor-
mal distribution as you might know.

import Control.Monad
import Control.Monad.Trans

import Simulation.Aivika.Trans
import Simulation.Aivika.Lattice
import Simulation.Aivika.Experiment.Histogram

meanUpTime = 1.0
meanRepairTime = 0.5

specs = Specs { spcStartTime = 0.0,
spcStopTime = 1000.0,
spcDT = 0.1,
spcMethod = RungeKutta4,
spcGeneratorType = SimpleGenerator }

model :: Simulation LIO Histogram
model =
do let latticeDistribution :: Estimate LIO [Int]

latticeDistribution =
do k <- liftComp latticeMemberIndex
return [k]

let reduce :: [Int] -> [Int] -> Estimate LIO [Int]
reduce ks1 ks2 = return $ ks1 ++ ks2

let leaf = latticeDistribution

ks <- foldEstimate reduce leaf

runEstimateInStartTime $
do xs <- ks
let ys = fmap (fromIntegral) xs

hs = histogram binScott [ys]
return hs

main :: IO ()
main =
do lat <- newRandomLattice 10
hs <- runLIO lat $

runSimulation model specs
putStrLn "Histogram:"
putStrLn (show hs)

By running this model in the Terminal, I received the following output.

$ runghc Distribution.hs
Histogram:
[(0.25,[1]),(1.25,[10]),(2.25,[45]),(3.25,[120]),(4.25,[210]),(5.25,[252]),
(6.25,[210]),(7.25,[120]),(8.25,[45]),(9.25,[10]),(10.25,[1])]

141

The values in square brackets define the weight of the corresponding his-
togram bins. Even though the member indices are integers, the histogram is
built under assumption that the values can be floating-point numbers.

Here we see that the terminating lattice node with mid member index is
used about in 252 times more frequently than the nodes with start and end
member indices. The real value is conditional enough as it was built for non-
integer values, but the order of magnitude is very impressive. So, our numerical
experiment corresponds to the theory.

14.7 Criteria for Applicability

Since the lattice nodes can have very different impact on the final estimation as
we saw in section 14.6, it is very important to understand when the lattice is
applicable and when it is not. This is so a crucial point that I decided to devote
a separate section to this subject. It is easy to make a mistake here.

Probably, this type of nested simulation is applicable to binomial pricing
models of financial modeling. For example, we could extend them by intro-
ducing the elements of discrete event simulation. Only the question is whether
there is a real demand for it. But you as my reader might agree that the consid-
ered type of nested simulation looks very nice, at least, from the standpoint of
theory.

14.8 Example: Binomial Option Pricing Model

As an example, we will consider the binomial option pricing model. It can be
easily implemented in Aivika using the LIO computation.

Assume a put option with strike price $110 currently trading at $100
and expiring in one year. Annual risk free rate is at 5%. Price is
expected to increase 20% and decrease 15% every six months. It is
necessary to estimate the price of the put option.

import Control.Monad
import Control.Monad.Trans

import Simulation.Aivika.Trans
import Simulation.Aivika.Lattice
import Simulation.Aivika.Experiment.Histogram

-- the lattice size
n = 50

-- the up and down factors
u0 = 1.2
d0 = 0.85

-- corrected factors for the lattice size
u = exp (log u0 / (fromIntegral n / 2))
d = exp (log d0 / (fromIntegral n / 2))

-- initial stock price
s0 = 100.0

142

-- strike price for put option
strikePrice = 110.0

-- risk free rate
r = 0.05

specs = Specs { spcStartTime = 0.0,
spcStopTime = 1.0,
spcDT = 0.1,
spcMethod = RungeKutta4,
spcGeneratorType = SimpleGenerator }

model :: Simulation LIO Double
model =
do -- stock price
s <- newRef s0

-- calculate the stock price tree
runEventInStartTime $
enqueueEventWithLatticeTimes $
do k <- liftComp latticeMemberIndex
k0 <- liftComp latticeParentMemberIndex
case k0 of
Nothing -> return ()
Just k0 | k == k0 ->
modifyRef s (\x -> x * u)

Just k0 | k == k0 + 1 ->
modifyRef s (\x -> x * d)

-- the lattice time step
dt <- liftParameter latticeTimeStep

-- calculate the up move probability
let p = (exp (- r * dt) - d) / (u - d)

-- estimate the option price in the end time
let leaf :: Estimate LIO Double

leaf =
do x <- readObservable s
-- this is a put option
return $ max (strikePrice - x) 0

-- estimate the option price by the forecast
let reduce :: Double -> Double -> Estimate LIO Double

reduce x1 x2 =
return $
exp (- r * dt) * (p * x1 + (1 - p) * x2)

price <- foldEstimate reduce leaf

runEstimateInStartTime price

main :: IO ()
main =
do lat <- newRandomLattice n
e <- runLIO lat $

runSimulation model specs
putStrLn "Estimation:"
putStrLn (show e)

After running it in the Terminal, I received the following estimation:

$ runghc BinomialPricingModel.hs

143

Estimation:
14.153391452807556

The example does not demonstrate all the strengths of Aivika as it does not
include neither complicated events, nor discontinuous processes. Probably,
you will able to find a suitable application to this software tool.

14.9 Summary

Running the nested discrete event simulations in lattice nodes can be quite
an interesting field for research and possible applications. Only you should
be very careful clearly understanding when this type of nested simulation is
applicable.

144

Appendix A

Installing Aivika

The instructions below are given for the case when you use Stack1, although
the same libraries can be installed using Cabal. Please note that the versions
used in the instructions correspond to the time of writing this document. The
actual and updated version numbers can be found at the AivikaSoft website2.

A.1 Using Open Source Libraries Only

When using the open source Aivika libraries only, you can add the following
dependencies to the extra-deps section in your stack.yaml file:

- aivika-5.5
- aivika-transformers-5.5
- aivika-distributed-1.1.1
- aivika-experiment-5.3
- aivika-experiment-chart-5.3
- aivika-experiment-diagrams-5.1
- aivika-experiment-cairo-5.1
- aivika-realtime-0.3
- aivika-branches-0.3
- aivika-lattice-0.6
- aivika-gpss-0.4

Now these libraries will be available in your Stack project.

A.2 Using Aivika Extension Pack

Aivika Extension Pack is a set of additional Aivika libraries which use is gov-
erned by its own license3. In short, Aivika Extension Pack is free for educational
and academic projects, but the commercial license must be purchased in other
cases.

To include the libraries from Aivika Extension Pack in your Stack project,
you should add the following direct locations to the packages section in your
stack.yaml file like this:

1http://docs.haskellstack.org/
2http://aivikasoft.com/en/install.html
3http://aivikasoft.com/downloads/aivika-extension-pack/license.txt

145

- location:
https://github.com/dsorokin/aivika-experiment-entity/archive/v0.5.tar.gz
extra-dep: true

- location:
https://github.com/dsorokin/aivika-experiment-entity-HDBC/archive/v0.4.tar.gz
extra-dep: true

- location:
https://github.com/dsorokin/aivika-experiment-provider/archive/v0.6.tar.gz
extra-dep: true

- location:
https://github.com/dsorokin/aivika-experiment-provider-distributed/archive/v0.2.tar.gz
extra-dep: true

- location:
https://github.com/dsorokin/aivika-experiment-report/archive/v0.5.tar.gz
extra-dep: true

- ’.’

Then you should define the corresponding dependencies in the extra-deps
section of the same file:

- aivika-experiment-entity-0.5
- aivika-experiment-entity-HDBC-0.4
- aivika-experiment-provider-0.6
- aivika-experiment-provider-distributed-0.2
- aivika-experiment-report-0.5

Now you can use Aivika Extension Pack in your Stack project.

A.3 API Reference Documentation

After installing Aivika, you can build the API reference documentation:

$ stack haddock

146

Appendix B

Charting Backend

There are two charting back-ends for the applied Chart library in Aivika: Cairo-
based and Diagrams-based. The both can be used interchangeably.

The first one is implemented in package aivika-experiment-cairo. It
requires the Cairo library to be installed on your computer. I could make it
working on Linux and macOS only. The most simple way was to install Aivika
with help of Cabal. Then I used the gtk2hs-buildtools package to install the
necessary packages cairo and Chart-cairo. I did not test this back-end with
Stack.

The second back-end is implemented in the aivika-experiment-diagrams
package. It works on all main platforms: Windows, Linux and macOS. It is
easy to install this charting back-end both with Cabal and Stack.

The Cairo-based back-end is fastest. It creates PNG image files of small size.
Instead, the Diagrams-based charting backed can create SVG vector graphics
files. The SVG files are more detailed, but they can have a very large size
sometimes, which may slow down the simulation experiment. I personally
have no preferences, which of the formats is better.

147

Appendix C

Tracing Simulation

After you start working on a new model, you may want to test that the model
behaves as expected: the events are generated in order, the processes work
properly and so on. In such a case, it can be helpful to add a tracing of the
simulation model. For that, Aivika provides with very simple combinators that
allow you to construct new computations that would already show the tracing
information during simulation.

For example, there are the following tracing combinators for the Event and
Process computations:

traceEvent :: String -> Event a -> Event a
traceProcess :: String -> Process a -> Process a

There are similar tracing combinators for other simulation computations
too. Here we pass the debugging message and the computation we want to
trace. Then we have to apply the resulting computation in our model instead
of that one we have just passed to the function.

To demonstrate the approach, let us take our favourite model from section
2.6 and rewrite it slightly:

import Control.Monad.Trans

import Simulation.Aivika

meanUpTime = 1.0
meanRepairTime = 0.5

specs = Specs { spcStartTime = 0.0,
spcStopTime = 10.0,
spcDT = 1.0,
spcMethod = RungeKutta4,
spcGeneratorType = SimpleGenerator }

model :: Simulation Results
model =
do totalUpTime <- newRef 0.0

let machine :: Int -> Process ()
machine i =
do upTime <-

traceProcess (show i ++ " has started working...") $

148

randomExponentialProcess meanUpTime
liftEvent $
modifyRef totalUpTime (+ upTime)

repairTime <-
traceProcess (show i ++ " is to be repaired") $
randomExponentialProcess meanRepairTime

machine i

runProcessInStartTime $ machine 1
runProcessInStartTime $ machine 2

let upTimeProp =
do x <- readRef totalUpTime
y <- liftDynamics time
return $ x / (2 * y)

return $
results
[resultSource
"upTimeProp"
"The long-run proportion of up time (~ 0.66)"
upTimeProp]

main =
printSimulationResultsInStopTime
printResultSourceInEnglish
model specs

When running the simulation in Emacs, I received the following output:

*Main> main
t = 0.0: 1 has started working...
t = 0.0: 2 has started working...
t = 0.4318062180996482: 2 is to be repaired
t = 0.5305397516818269: 2 has started working...
t = 0.5586381207729983: 1 is to be repaired
t = 0.7991693313890962: 1 has started working...
t = 1.1112112024351803: 1 is to be repaired
t = 1.6643746260347085: 2 is to be repaired
t = 1.856704114194633: 1 has started working...
t = 2.0962321743791383: 2 has started working...
t = 2.2388567478888683: 1 is to be repaired
t = 2.247968821638724: 1 has started working...
t = 2.2941823206736935: 1 is to be repaired
t = 2.531581157098128: 1 has started working...
t = 2.9454519613530263: 1 is to be repaired
t = 3.193197128356786: 1 has started working...
t = 3.300465964786781: 1 is to be repaired
t = 4.187174883320544: 2 is to be repaired
t = 4.256014384274227: 2 has started working...
t = 4.358482637694295: 1 has started working...
t = 4.75598928287998: 2 is to be repaired
t = 5.103523956621543: 1 is to be repaired
t = 5.174350666896869: 2 has started working...
t = 6.826423919789626: 1 has started working...
t = 7.5805949343846315: 2 is to be repaired
t = 7.996224752680289: 2 has started working...
t = 8.267767012096208: 2 is to be repaired
t = 8.58683886539276: 2 has started working...
t = 8.638961434698468: 1 is to be repaired
t = 8.69742530559413: 1 has started working...
t = 9.173995410698865: 2 is to be repaired
t = 9.264242025802165: 2 has started working...

149

t = 9.532011600233057: 1 is to be repaired

-- simulation time
t = 10.0

-- The long-run proportion of up time (~ 0.66)
upTimeProp = 0.6316926332958837

Of course, the stop time was too small to receive a good estimation of the
resulting variable, but we see how the model behaves thanks to these debugging
messages.

150

Bibliography

[1] H. Abelson and G. Sussman. Structure and Interpretation of Computer Pro-
grams. MIT Press, Cambridge, Mass., USA, 1985.

[2] Samadi B. Distributed simulation, algorithms and performance analysis. PhD
thesis, University of California, Los Angeles, 1985.

[3] Jefferson D.R. and B. Beckman et al. The Time Warp operating systems.
11th Symposium on Operating Systems Principles, 21:77–93, 1987.

[4] John Hughes. Generalising monads to arrows. Science of Computer Pro-
gramming, 37:67–111, 1998.

[5] John Hughes. Programming with arrows. In Advanced Functional Program-
ming, pages 73–129, 2004.

[6] iThink Software. http://www.iseesystems.com, 2014. Accessed: 1-May-
2014.

[7] Robert Macey and George Oster. Berkeley Madonna Software. http:
//www.berkeleymadonna.com, 2014. Accessed: 1-May-2014.

[8] Norm Matloff. Introduction to discrete-event simulation and the SimPy
language. http://simpy.readthedocs.org/en/latest/, 2008. Accessed:
1-May-2014.

[9] Henrik Nilsson and Antony Courtney et al. Yampa Library, Version 0.9.5.
http://hackage.haskell.org/package/Yampa, 2014. Accessed: 1-May-
2014.

[10] Ross Paterson. A new notation for Arrows. In In International Conference
on Functional Programming, ICFP ’01, pages 229–240. ACM, 2001.

[11] Simon Peyton Jones, Jean-Marc Eber, and Julian Seward. Composing
contracts: An adventure in financial engineering (functional pearl). In
Proceedings of the Fifth ACM SIGPLAN International Conference on Functional
Programming, ICFP ’00, pages 280–292, New York, NY, USA, 2000. ACM.

[12] A.A.B. Pritsker and J.J. O’Reilly. Simulation with Visual SLAM and AweSim.
John Wiley & Sons, Inc., New York, NY, USA, 2nd edition, 1999.

[13] Fujimoto R.M. Parallel and Distributed Simulation Systems. Wiley Inter-
science, 2000.

151

http://www.iseesystems.com
http://www.berkeleymadonna.com
http://www.berkeleymadonna.com
http://simpy.readthedocs.org/en/latest/
http://hackage.haskell.org/package/Yampa

[14] Thomas Schriber. Simulation using GPSS. Wiley, 1974.

[15] SimPy Library. http://simpy.readthedocs.org/en/latest/, 2014. Ac-
cessed: 1-May-2014.

[16] AnyLogic Software. http://www.anylogic.com, 2014. Accessed: 1-May-
2014.

[17] Ilya I. Trub. An Object-oriented Modeling in C++. Piter, Russia, 2006. (In
Russian).

[18] Vensim Software. http://vensim.com, 2013. Accessed: 1-May-2014.

152

http://simpy.readthedocs.org/en/latest/
http://www.anylogic.com
http://vensim.com

Index

activity-oriented simulation, 35
agent-based modeling, 77
arrays, 91
automata, 82
auxiliary random variable, 14

binomial option pricing model, 142

Cloud Haskell, 110
computation BR, 130
computation Composite, 57
computation DIO, 111
computation Dynamics, 11
computation Estimate, 139
computation Event, 22
computation LIO, 138
computation Observable, 139
computation Parameter, 10
computation Processor, 62
computation Process, 27
computation Signal, 55
computation Simulation, 9
computation Stream, 60
CSV table, 17, 92

deviation chart, 32, 48, 69, 74, 80, 88,
100

difference equations, 15
discontinuous process, 27
discrete event, 22
discrete event simulation, 22

event-oriented simulation, 22
exception handling, 30

FCFS, 38
FIFO, see FCFS

generalized simulation, 105
GPSS, 96

histogram, 32, 69, 74, 88, 100

Input/Output operations, 120
integrals, 12

lattice, 135
LCFS, 38
LIFO, see LCFS
logical process, 110

message passing, 111
modeling time horizon, 121
Monte-Carlo method, 15
mutable reference, 24
mutable variable with memory, 26

nested simulation, 129

ordinary differential equations, 11

Paradox of Time, 110
parallel and distributed simulation, 104
process-oriented simulation, 27
processing time, 66

queue, 58
queue strategies, 38

random delay, 30
random parameter, 11
random stream, 61
resource, 39
resource preemption, 50

sensitivity analysis, 85
sequential simulation, 8
server, 65
signal, 55
simulation branch, 130
simulation experiment, 15, 126
statistics, 52
statistics reset, 43, 59, 65
statistics summary, 48, 69, 74, 88, 100
stochastic equations, 14

153

stream, 60
system dynamics, 85

task, 56
time series chart, 17, 88, 92
time server, 112
Time Warp method, 110

XY chart, 92

154

	I Sequential Simulation
	Getting Started
	Simulation
	External Parameters
	Ordinary Differential Equations
	Integrals
	Memoization and Side Effects
	Stochastic Equations
	Difference Equations
	Lifting Computations

	Simulation Experiment
	Returning Results from Model
	Experiment Definition
	Charting
	Running Simulation Experiment

	Discrete Event Simulation
	Event-oriented Simulation
	Mutable Reference
	Example: Event-oriented Simulation
	Variable with Memory
	Process-oriented Simulation
	Discontinuous Processes
	Spawning Processes in Parallel
	Memoizing
	Exception Handling
	Random Process Delays

	Example: Process-oriented Simulation
	Returning Results from Model
	Experiment Definition
	Charting
	Running Simulation Experiment

	Activity-oriented Simulation
	Example: Activity-oriented Simulation

	Resources
	Queue Strategies
	Resource
	Example: Using Resources
	Resource Statistics
	Example: Collecting Resource Statistics
	Referencing to Properties
	Example: Charts for Resource Properties
	Returning Results from Model
	Experiment Definition
	Charting
	Running Simulation Experiment

	Resource Preemption

	Statistics
	Statistics based upon Observations
	Statistics for Time Persistent Variables

	Signals and Tasks
	Signaling
	Tasks
	Composites

	Queue Network
	Queues
	Stream
	Passive Streams and Active Signals
	Processor
	Server
	Measuring Processing Time
	Example: Queue Network
	Returning Results from Model
	Experiment Definition
	Charting
	Running Simulation Experiment

	Example: Resource Preemption
	Returning Results from Model
	Experiment Definition
	Charting
	Running Simulation Experiment

	Agent-based Modeling
	Agents and Their States
	Example: Agent-based Modeling
	Returning Results From Model
	Experiment Definition
	Charting
	Running Simulation Experiment

	Automata
	Circuit
	Network

	System Dynamics
	Example: Parametric Model
	Returning Results From Model
	Experiment Definition
	Charting
	Running Simulation Experiments

	Example: Using Arrays
	Returning Results from Model
	Experiment Definition
	Charting
	Running Simulation Experiment

	GPSS-like DSL
	Blocks and Transacts
	Example: Using GPSS
	Returning Results from Model
	Experiment Definition
	Charting
	Running Simulation Experiment

	II Parallel and Distributed Simulation
	Generalizing Simulation
	Two Versions of Simulation Library
	Replacing IO with Abstract Computation
	Generalizing Sequential Model
	Writing Generalized Code

	Distributed Simulation Computation
	DIO Computation
	Running DIO Computation and Time Server
	Example: Equivalent Sequential Simulation
	Example: Making Simulation Distributed
	Input/Output Operations
	Modeling Time Horizon
	Retrying Computations
	Recovering After Temporary Connection Errors
	Stopping Disconnected Simulation
	Distributed Simulation As Service
	Monitoring Distributed Simulation
	Distributed Simulation Experiment
	Summary

	III Nested Simulation
	Branches
	Branching Simulation Computation
	Example: Simulation Branches
	Summary

	Lattice
	Introducing Lattice
	Lattice Data Type
	Lattice Simulation Computation
	Observable Computation
	Estimate Computation
	Example: Binomial Distribution
	Criteria for Applicability
	Example: Binomial Option Pricing Model
	Summary

	Installing Aivika
	Using Open Source Libraries Only
	Using Aivika Extension Pack
	API Reference Documentation

	Charting Backend
	Tracing Simulation

